| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatlen | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ♯ ‘ ( 𝑆  ++  𝑇 ) )  =  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ ( 𝑆  ++  𝑇 ) )  =  0  ↔  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  =  0 ) ) | 
						
							| 3 |  | ovex | ⊢ ( 𝑆  ++  𝑇 )  ∈  V | 
						
							| 4 |  | hasheq0 | ⊢ ( ( 𝑆  ++  𝑇 )  ∈  V  →  ( ( ♯ ‘ ( 𝑆  ++  𝑇 ) )  =  0  ↔  ( 𝑆  ++  𝑇 )  =  ∅ ) ) | 
						
							| 5 | 3 4 | mp1i | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ♯ ‘ ( 𝑆  ++  𝑇 ) )  =  0  ↔  ( 𝑆  ++  𝑇 )  =  ∅ ) ) | 
						
							| 6 |  | lencl | ⊢ ( 𝑆  ∈  Word  𝐴  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 ) | 
						
							| 7 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( ♯ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 8 |  | nn0ge0 | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  0  ≤  ( ♯ ‘ 𝑆 ) ) | 
						
							| 9 | 7 8 | jca | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑆 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝑆  ∈  Word  𝐴  →  ( ( ♯ ‘ 𝑆 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 11 |  | lencl | ⊢ ( 𝑇  ∈  Word  𝐵  →  ( ♯ ‘ 𝑇 )  ∈  ℕ0 ) | 
						
							| 12 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑇 )  ∈  ℕ0  →  ( ♯ ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 13 |  | nn0ge0 | ⊢ ( ( ♯ ‘ 𝑇 )  ∈  ℕ0  →  0  ≤  ( ♯ ‘ 𝑇 ) ) | 
						
							| 14 | 12 13 | jca | ⊢ ( ( ♯ ‘ 𝑇 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑇 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( 𝑇  ∈  Word  𝐵  →  ( ( ♯ ‘ 𝑇 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑇 ) ) ) | 
						
							| 16 |  | add20 | ⊢ ( ( ( ( ♯ ‘ 𝑆 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑆 ) )  ∧  ( ( ♯ ‘ 𝑇 )  ∈  ℝ  ∧  0  ≤  ( ♯ ‘ 𝑇 ) ) )  →  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  =  0  ↔  ( ( ♯ ‘ 𝑆 )  =  0  ∧  ( ♯ ‘ 𝑇 )  =  0 ) ) ) | 
						
							| 17 | 10 15 16 | syl2an | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ 𝑇 ) )  =  0  ↔  ( ( ♯ ‘ 𝑆 )  =  0  ∧  ( ♯ ‘ 𝑇 )  =  0 ) ) ) | 
						
							| 18 | 2 5 17 | 3bitr3d | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( 𝑆  ++  𝑇 )  =  ∅  ↔  ( ( ♯ ‘ 𝑆 )  =  0  ∧  ( ♯ ‘ 𝑇 )  =  0 ) ) ) | 
						
							| 19 |  | hasheq0 | ⊢ ( 𝑆  ∈  Word  𝐴  →  ( ( ♯ ‘ 𝑆 )  =  0  ↔  𝑆  =  ∅ ) ) | 
						
							| 20 |  | hasheq0 | ⊢ ( 𝑇  ∈  Word  𝐵  →  ( ( ♯ ‘ 𝑇 )  =  0  ↔  𝑇  =  ∅ ) ) | 
						
							| 21 | 19 20 | bi2anan9 | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( ( ♯ ‘ 𝑆 )  =  0  ∧  ( ♯ ‘ 𝑇 )  =  0 )  ↔  ( 𝑆  =  ∅  ∧  𝑇  =  ∅ ) ) ) | 
						
							| 22 | 18 21 | bitrd | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  Word  𝐵 )  →  ( ( 𝑆  ++  𝑇 )  =  ∅  ↔  ( 𝑆  =  ∅  ∧  𝑇  =  ∅ ) ) ) |