Step |
Hyp |
Ref |
Expression |
1 |
|
ccatlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = 0 ↔ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) = 0 ) ) |
3 |
|
ovex |
⊢ ( 𝑆 ++ 𝑇 ) ∈ V |
4 |
|
hasheq0 |
⊢ ( ( 𝑆 ++ 𝑇 ) ∈ V → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = 0 ↔ ( 𝑆 ++ 𝑇 ) = ∅ ) ) |
5 |
3 4
|
mp1i |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = 0 ↔ ( 𝑆 ++ 𝑇 ) = ∅ ) ) |
6 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
7 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
8 |
|
nn0ge0 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → 0 ≤ ( ♯ ‘ 𝑆 ) ) |
9 |
7 8
|
jca |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝑆 ) ) ) |
10 |
6 9
|
syl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝑆 ) ) ) |
11 |
|
lencl |
⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
12 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
13 |
|
nn0ge0 |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 → 0 ≤ ( ♯ ‘ 𝑇 ) ) |
14 |
12 13
|
jca |
⊢ ( ( ♯ ‘ 𝑇 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝑇 ) ) ) |
15 |
11 14
|
syl |
⊢ ( 𝑇 ∈ Word 𝐵 → ( ( ♯ ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝑇 ) ) ) |
16 |
|
add20 |
⊢ ( ( ( ( ♯ ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝑆 ) ) ∧ ( ( ♯ ‘ 𝑇 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) = 0 ↔ ( ( ♯ ‘ 𝑆 ) = 0 ∧ ( ♯ ‘ 𝑇 ) = 0 ) ) ) |
17 |
10 15 16
|
syl2an |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) = 0 ↔ ( ( ♯ ‘ 𝑆 ) = 0 ∧ ( ♯ ‘ 𝑇 ) = 0 ) ) ) |
18 |
2 5 17
|
3bitr3d |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) = ∅ ↔ ( ( ♯ ‘ 𝑆 ) = 0 ∧ ( ♯ ‘ 𝑇 ) = 0 ) ) ) |
19 |
|
hasheq0 |
⊢ ( 𝑆 ∈ Word 𝐴 → ( ( ♯ ‘ 𝑆 ) = 0 ↔ 𝑆 = ∅ ) ) |
20 |
|
hasheq0 |
⊢ ( 𝑇 ∈ Word 𝐵 → ( ( ♯ ‘ 𝑇 ) = 0 ↔ 𝑇 = ∅ ) ) |
21 |
19 20
|
bi2anan9 |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ( ♯ ‘ 𝑆 ) = 0 ∧ ( ♯ ‘ 𝑇 ) = 0 ) ↔ ( 𝑆 = ∅ ∧ 𝑇 = ∅ ) ) ) |
22 |
18 21
|
bitrd |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) = ∅ ↔ ( 𝑆 = ∅ ∧ 𝑇 = ∅ ) ) ) |