Metamath Proof Explorer


Theorem ccat2s1cl

Description: The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccat2s1cl ( ( 𝑋𝑉𝑌𝑉 ) → ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ∈ Word 𝑉 )

Proof

Step Hyp Ref Expression
1 s1cl ( 𝑋𝑉 → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
2 ccatws1cl ( ( ⟨“ 𝑋 ”⟩ ∈ Word 𝑉𝑌𝑉 ) → ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ∈ Word 𝑉 )
3 1 2 sylan ( ( 𝑋𝑉𝑌𝑉 ) → ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ∈ Word 𝑉 )