Database
REAL AND COMPLEX NUMBERS
Words over a set
Concatenations with singleton words
ccat2s1fst
Metamath Proof Explorer
Description: The first symbol of the concatenation of a word with two single symbols.
(Contributed by Alexander van der Vekens , 22-Sep-2018) (Revised by AV , 28-Jan-2024)
Ref
Expression
Assertion
ccat2s1fst
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) )
Proof
Step
Hyp
Ref
Expression
1
0nn0
⊢ 0 ∈ ℕ0
2
ccat2s1fvw
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) )
3
1 2
mp3an2
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) )