Metamath Proof Explorer


Theorem ccat2s1fstOLD

Description: Obsolete version of ccat2s1fst as of 28-Jan-2024. The first symbol of the concatenation of a word with two single symbols. (Contributed by Alexander van der Vekens, 22-Sep-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ccat2s1fstOLD ( ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = ( 𝑊 ‘ 0 ) )

Proof

Step Hyp Ref Expression
1 0nn0 0 ∈ ℕ0
2 ccat2s1fvwOLD ( ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = ( 𝑊 ‘ 0 ) )
3 1 2 mp3anl2 ( ( ( 𝑊 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = ( 𝑊 ‘ 0 ) )