| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatw2s1ass | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 )  =  ( 𝑊  ++  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 ) ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 )  =  ( 𝑊  ++  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 ) ) ) | 
						
							| 3 | 2 | fveq1d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ 𝐼 )  =  ( ( 𝑊  ++  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 ) ) ‘ 𝐼 ) ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 5 |  | s1cli | ⊢ 〈“ 𝑋 ”〉  ∈  Word  V | 
						
							| 6 |  | ccatws1clv | ⊢ ( 〈“ 𝑋 ”〉  ∈  Word  V  →  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 )  ∈  Word  V ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 )  ∈  Word  V ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ℕ0 ) | 
						
							| 9 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 11 |  | nn0ge0 | ⊢ ( 𝐼  ∈  ℕ0  →  0  ≤  𝐼 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0 )  →  0  ≤  𝐼 ) | 
						
							| 13 |  | 0red | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 14 |  | nn0re | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℝ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0 )  →  𝐼  ∈  ℝ ) | 
						
							| 16 | 9 | nn0red | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 18 |  | lelttr | ⊢ ( ( 0  ∈  ℝ  ∧  𝐼  ∈  ℝ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℝ )  →  ( ( 0  ≤  𝐼  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 19 | 13 15 17 18 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0 )  →  ( ( 0  ≤  𝐼  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 | 12 19 | mpand | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼  <  ( ♯ ‘ 𝑊 )  →  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 20 | 3impia | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  0  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 22 |  | elnnnn0b | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  0  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 23 | 10 21 22 | sylanbrc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝐼  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 25 |  | elfzo0 | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 26 | 8 23 24 25 | syl3anbrc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 27 |  | ccatval1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 )  ∈  Word  V  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  ++  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 ) ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) ) | 
						
							| 28 | 4 7 26 27 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  ( 〈“ 𝑋 ”〉  ++  〈“ 𝑌 ”〉 ) ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) ) | 
						
							| 29 | 3 28 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) ) |