| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ccatw2s1ccatws2 | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 )  =  ( 𝑊  ++  〈“ 𝑋 𝑌 ”〉 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq1d | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ 𝐼 )  =  ( ( 𝑊  ++  〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ 𝐼 )  =  ( ( 𝑊  ++  〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝑊  ∈  Word  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							s2cli | 
							⊢ 〈“ 𝑋 𝑌 ”〉  ∈  Word  V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  〈“ 𝑋 𝑌 ”〉  ∈  Word  V )  | 
						
						
							| 7 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ℕ0 )  | 
						
						
							| 8 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								8
							 | 
							nn0zd | 
							⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℤ )  | 
						
						
							| 11 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝐼  <  ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							elfzo0z | 
							⊢ ( 𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 13 | 
							
								7 10 11 12
							 | 
							syl3anbrc | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ccatval1 | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  〈“ 𝑋 𝑌 ”〉  ∈  Word  V  ∧  𝐼  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  ++  〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) )  | 
						
						
							| 15 | 
							
								4 6 13 14
							 | 
							syl3anc | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							eqtrd | 
							⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  ∈  ℕ0  ∧  𝐼  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ 𝐼 )  =  ( 𝑊 ‘ 𝐼 ) )  |