Metamath Proof Explorer


Theorem ccat2s1p1OLD

Description: Obsolete version of ccat2s1p1 as of 20-Jan-2024. Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ccat2s1p1OLD ( ( 𝑋𝑉𝑌𝑉 ) → ( ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 s1cl ( 𝑋𝑉 → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
2 1 adantr ( ( 𝑋𝑉𝑌𝑉 ) → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
3 s1cl ( 𝑌𝑉 → ⟨“ 𝑌 ”⟩ ∈ Word 𝑉 )
4 3 adantl ( ( 𝑋𝑉𝑌𝑉 ) → ⟨“ 𝑌 ”⟩ ∈ Word 𝑉 )
5 s1len ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) = 1
6 5 a1i ( 𝑋𝑉 → ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) = 1 )
7 1nn 1 ∈ ℕ
8 6 7 eqeltrdi ( 𝑋𝑉 → ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) ∈ ℕ )
9 lbfzo0 ( 0 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) ) ↔ ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) ∈ ℕ )
10 8 9 sylibr ( 𝑋𝑉 → 0 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) ) )
11 10 adantr ( ( 𝑋𝑉𝑌𝑉 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) ) )
12 ccatval1OLD ( ( ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 ∧ ⟨“ 𝑌 ”⟩ ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑋 ”⟩ ) ) ) → ( ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = ( ⟨“ 𝑋 ”⟩ ‘ 0 ) )
13 2 4 11 12 syl3anc ( ( 𝑋𝑉𝑌𝑉 ) → ( ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = ( ⟨“ 𝑋 ”⟩ ‘ 0 ) )
14 s1fv ( 𝑋𝑉 → ( ⟨“ 𝑋 ”⟩ ‘ 0 ) = 𝑋 )
15 14 adantr ( ( 𝑋𝑉𝑌𝑉 ) → ( ⟨“ 𝑋 ”⟩ ‘ 0 ) = 𝑋 )
16 13 15 eqtrd ( ( 𝑋𝑉𝑌𝑉 ) → ( ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ‘ 0 ) = 𝑋 )