Step |
Hyp |
Ref |
Expression |
1 |
|
ccatdmss.1 |
⊢ ( 𝜑 → 𝐴 ∈ Word 𝑆 ) |
2 |
|
ccatdmss.2 |
⊢ ( 𝜑 → 𝐵 ∈ Word 𝑆 ) |
3 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑆 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
4
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
6 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ) |
7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ) |
8 |
|
lencl |
⊢ ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℕ0 ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℕ0 ) |
10 |
9
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℤ ) |
11 |
4
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
12 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑆 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
14 |
|
nn0addge1 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐴 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
15 |
11 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
16 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
17 |
1 2 16
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
18 |
15 17
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) |
19 |
|
eluz2 |
⊢ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐴 ) ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
20 |
5 10 18 19
|
syl3anbrc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐴 ) ) ) |
21 |
|
fzoss2 |
⊢ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐴 ) ) → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
23 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐴 ) ) |
24 |
23 1
|
wrdfd |
⊢ ( 𝜑 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑆 ) |
25 |
24
|
fdmd |
⊢ ( 𝜑 → dom 𝐴 = ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
26 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) |
27 |
26 7
|
wrdfd |
⊢ ( 𝜑 → ( 𝐴 ++ 𝐵 ) : ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ⟶ 𝑆 ) |
28 |
27
|
fdmd |
⊢ ( 𝜑 → dom ( 𝐴 ++ 𝐵 ) = ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
29 |
22 25 28
|
3sstr4d |
⊢ ( 𝜑 → dom 𝐴 ⊆ dom ( 𝐴 ++ 𝐵 ) ) |