Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
2 |
|
elnnnn0b |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐴 ) ) ) |
3 |
2
|
biimpri |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
5 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
6 |
4 5
|
sylibr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
8 |
|
ccatval1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
9 |
7 8
|
syld3an3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |