Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ 𝐶 ) |
2 |
|
ccatopth |
⊢ ( ( ( 𝐶 ∈ Word 𝑋 ∧ 𝐴 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ 𝐶 ) ) → ( ( 𝐶 ++ 𝐴 ) = ( 𝐶 ++ 𝐵 ) ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
3 |
1 2
|
mp3an3 |
⊢ ( ( ( 𝐶 ∈ Word 𝑋 ∧ 𝐴 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ) → ( ( 𝐶 ++ 𝐴 ) = ( 𝐶 ++ 𝐵 ) ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
4 |
3
|
3impdi |
⊢ ( ( 𝐶 ∈ Word 𝑋 ∧ 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) → ( ( 𝐶 ++ 𝐴 ) = ( 𝐶 ++ 𝐵 ) ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
5 |
4
|
3coml |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) → ( ( 𝐶 ++ 𝐴 ) = ( 𝐶 ++ 𝐵 ) ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
6 |
|
eqid |
⊢ 𝐶 = 𝐶 |
7 |
6
|
biantrur |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) |
8 |
5 7
|
bitr4di |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) → ( ( 𝐶 ++ 𝐴 ) = ( 𝐶 ++ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |