Step |
Hyp |
Ref |
Expression |
1 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐵 |
2 |
|
ccatvalfn |
⊢ ( ( ∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵 ) → ( ∅ ++ 𝑆 ) Fn ( 0 ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ∅ ++ 𝑆 ) Fn ( 0 ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) |
4 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
5 |
4
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) = ( 0 + ( ♯ ‘ 𝑆 ) ) |
6 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
7 |
6
|
nn0cnd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
8 |
7
|
addid2d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 0 + ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑆 ) ) |
9 |
5 8
|
eqtrid |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑆 ) ) |
10 |
9
|
eqcomd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) = ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( 0 ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) |
12 |
11
|
fneq2d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ( ∅ ++ 𝑆 ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ↔ ( ∅ ++ 𝑆 ) Fn ( 0 ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) ) |
13 |
3 12
|
mpbird |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ∅ ++ 𝑆 ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
14 |
|
wrdfn |
⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
15 |
4
|
a1i |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ ∅ ) = 0 ) |
16 |
15 9
|
oveq12d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ( ♯ ‘ ∅ ) ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑥 ∈ ( ( ♯ ‘ ∅ ) ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ↔ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |
18 |
17
|
biimpar |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( ( ♯ ‘ ∅ ) ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) |
19 |
|
ccatval2 |
⊢ ( ( ∅ ∈ Word 𝐵 ∧ 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( ( ♯ ‘ ∅ ) ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ∅ ++ 𝑆 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 − ( ♯ ‘ ∅ ) ) ) ) |
20 |
1 19
|
mp3an1 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( ( ♯ ‘ ∅ ) ..^ ( ( ♯ ‘ ∅ ) + ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ∅ ++ 𝑆 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 − ( ♯ ‘ ∅ ) ) ) ) |
21 |
18 20
|
syldan |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( ∅ ++ 𝑆 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 − ( ♯ ‘ ∅ ) ) ) ) |
22 |
4
|
oveq2i |
⊢ ( 𝑥 − ( ♯ ‘ ∅ ) ) = ( 𝑥 − 0 ) |
23 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) → 𝑥 ∈ ℤ ) |
24 |
23
|
adantl |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ℤ ) |
25 |
24
|
zcnd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ℂ ) |
26 |
25
|
subid1d |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑥 − 0 ) = 𝑥 ) |
27 |
22 26
|
eqtrid |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑥 − ( ♯ ‘ ∅ ) ) = 𝑥 ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ ( 𝑥 − ( ♯ ‘ ∅ ) ) ) = ( 𝑆 ‘ 𝑥 ) ) |
29 |
21 28
|
eqtrd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( ∅ ++ 𝑆 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
30 |
13 14 29
|
eqfnfvd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ∅ ++ 𝑆 ) = 𝑆 ) |