| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( ( 𝐴  ++  𝐵 )  prefix  ( ♯ ‘ 𝐴 ) )  =  ( ( 𝐶  ++  𝐷 )  prefix  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 2 |  | pfxccat1 | ⊢ ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  →  ( ( 𝐴  ++  𝐵 )  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 3 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 )  →  ( ( 𝐶  ++  𝐷 )  prefix  ( ♯ ‘ 𝐴 ) )  =  ( ( 𝐶  ++  𝐷 )  prefix  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 4 |  | pfxccat1 | ⊢ ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  →  ( ( 𝐶  ++  𝐷 )  prefix  ( ♯ ‘ 𝐶 ) )  =  𝐶 ) | 
						
							| 5 | 3 4 | sylan9eqr | ⊢ ( ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐶  ++  𝐷 )  prefix  ( ♯ ‘ 𝐴 ) )  =  𝐶 ) | 
						
							| 6 | 2 5 | eqeqan12d | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) ) )  →  ( ( ( 𝐴  ++  𝐵 )  prefix  ( ♯ ‘ 𝐴 ) )  =  ( ( 𝐶  ++  𝐷 )  prefix  ( ♯ ‘ 𝐴 ) )  ↔  𝐴  =  𝐶 ) ) | 
						
							| 7 | 1 6 | imbitrid | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  𝐴  =  𝐶 ) ) | 
						
							| 8 | 7 | 3impb | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  𝐴  =  𝐶 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) ) | 
						
							| 10 |  | simpl3 | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) ) | 
						
							| 11 | 9 | fveq2d | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ♯ ‘ ( 𝐶  ++  𝐷 ) ) ) | 
						
							| 12 |  | simpl1 | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 ) ) | 
						
							| 13 |  | ccatlen | ⊢ ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 15 |  | simpl2 | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 ) ) | 
						
							| 16 |  | ccatlen | ⊢ ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  →  ( ♯ ‘ ( 𝐶  ++  𝐷 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ♯ ‘ ( 𝐶  ++  𝐷 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 18 | 11 14 17 | 3eqtr3d | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 19 | 10 18 | opeq12d | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  〈 ( ♯ ‘ 𝐴 ) ,  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) 〉  =  〈 ( ♯ ‘ 𝐶 ) ,  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) 〉 ) | 
						
							| 20 | 9 19 | oveq12d | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 ( ♯ ‘ 𝐴 ) ,  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) 〉 )  =  ( ( 𝐶  ++  𝐷 )  substr  〈 ( ♯ ‘ 𝐶 ) ,  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) 〉 ) ) | 
						
							| 21 |  | swrdccat2 | ⊢ ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 ( ♯ ‘ 𝐴 ) ,  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) 〉 )  =  𝐵 ) | 
						
							| 22 | 12 21 | syl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ( 𝐴  ++  𝐵 )  substr  〈 ( ♯ ‘ 𝐴 ) ,  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) 〉 )  =  𝐵 ) | 
						
							| 23 |  | swrdccat2 | ⊢ ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  →  ( ( 𝐶  ++  𝐷 )  substr  〈 ( ♯ ‘ 𝐶 ) ,  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) 〉 )  =  𝐷 ) | 
						
							| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  ( ( 𝐶  ++  𝐷 )  substr  〈 ( ♯ ‘ 𝐶 ) ,  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) 〉 )  =  𝐷 ) | 
						
							| 25 | 20 22 24 | 3eqtr3d | ⊢ ( ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  ∧  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) )  →  𝐵  =  𝐷 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  𝐵  =  𝐷 ) ) | 
						
							| 27 | 8 26 | jcad | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 28 |  | oveq12 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) ) | 
						
							| 29 | 27 28 | impbid1 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) |