Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) ) |
2 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
4 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) |
5 |
4
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) ) |
6 |
3 5
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) ) |
7 |
|
ccatlen |
⊢ ( ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) → ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) ↔ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → 𝐴 ∈ Word 𝑋 ) |
11 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑋 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
13 |
12
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
14 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → 𝐶 ∈ Word 𝑋 ) |
15 |
|
lencl |
⊢ ( 𝐶 ∈ Word 𝑋 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
17 |
16
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
18 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → 𝐷 ∈ Word 𝑋 ) |
19 |
|
lencl |
⊢ ( 𝐷 ∈ Word 𝑋 → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐷 ) ∈ ℕ0 ) |
21 |
20
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ♯ ‘ 𝐷 ) ∈ ℂ ) |
22 |
13 17 21
|
addcan2d |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐷 ) ) = ( ( ♯ ‘ 𝐶 ) + ( ♯ ‘ 𝐷 ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) ) |
23 |
9 22
|
bitrd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐶 ++ 𝐷 ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) ) |
24 |
1 23
|
syl5ib |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) ) |
25 |
|
ccatopth |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
26 |
25
|
biimpd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
27 |
26
|
3expia |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
28 |
27
|
com23 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
30 |
24 29
|
mpdd |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
31 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ) |
32 |
30 31
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ) ∧ ( 𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ++ 𝐵 ) = ( 𝐶 ++ 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |