Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ 𝐶 ) |
2 |
|
ccatopth2 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) ∧ ( 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) ∧ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ 𝐶 ) ) → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) ) ) |
3 |
1 2
|
mp3an3 |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) ∧ ( 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) ) → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) ) ) |
4 |
3
|
3impdir |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) ) ) |
5 |
|
eqid |
⊢ 𝐶 = 𝐶 |
6 |
5
|
biantru |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐶 ) ) |
7 |
4 6
|
bitr4di |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋 ∧ 𝐶 ∈ Word 𝑋 ) → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |