Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑊 = ( 𝐴 ++ 𝐵 ) → ( 𝑊 ∈ Word 𝑆 ↔ ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ) ) |
2 |
|
wrdv |
⊢ ( 𝐴 ∈ Word 𝑋 → 𝐴 ∈ Word V ) |
3 |
|
wrdv |
⊢ ( 𝐵 ∈ Word 𝑌 → 𝐵 ∈ Word V ) |
4 |
|
ccatalpha |
⊢ ( ( 𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) ) ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) ) ) |
6 |
1 5
|
sylan9bbr |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) ∧ 𝑊 = ( 𝐴 ++ 𝐵 ) ) → ( 𝑊 ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) → 𝐴 ∈ Word 𝑆 ) |
8 |
6 7
|
syl6bi |
⊢ ( ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) ∧ 𝑊 = ( 𝐴 ++ 𝐵 ) ) → ( 𝑊 ∈ Word 𝑆 → 𝐴 ∈ Word 𝑆 ) ) |
9 |
8
|
expimpd |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ) → ( ( 𝑊 = ( 𝐴 ++ 𝐵 ) ∧ 𝑊 ∈ Word 𝑆 ) → 𝐴 ∈ Word 𝑆 ) ) |
10 |
9
|
3impia |
⊢ ( ( 𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑌 ∧ ( 𝑊 = ( 𝐴 ++ 𝐵 ) ∧ 𝑊 ∈ Word 𝑆 ) ) → 𝐴 ∈ Word 𝑆 ) |