| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wrd0 | 
							⊢ ∅  ∈  Word  𝐵  | 
						
						
							| 2 | 
							
								
							 | 
							ccatvalfn | 
							⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  ∅  ∈  Word  𝐵 )  →  ( 𝑆  ++  ∅ )  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ ∅ ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan2 | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( 𝑆  ++  ∅ )  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ ∅ ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							hash0 | 
							⊢ ( ♯ ‘ ∅ )  =  0  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq2i | 
							⊢ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ ∅ ) )  =  ( ( ♯ ‘ 𝑆 )  +  0 )  | 
						
						
							| 6 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ℕ0 )  | 
						
						
							| 7 | 
							
								6
							 | 
							nn0cnd | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  ∈  ℂ )  | 
						
						
							| 8 | 
							
								7
							 | 
							addridd | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( ( ♯ ‘ 𝑆 )  +  0 )  =  ( ♯ ‘ 𝑆 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							eqtr2id | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( ♯ ‘ 𝑆 )  =  ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ ∅ ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq2d | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( 0 ..^ ( ♯ ‘ 𝑆 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ ∅ ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fneq2d | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( ( 𝑆  ++  ∅ )  Fn  ( 0 ..^ ( ♯ ‘ 𝑆 ) )  ↔  ( 𝑆  ++  ∅ )  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑆 )  +  ( ♯ ‘ ∅ ) ) ) ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							mpbird | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( 𝑆  ++  ∅ )  Fn  ( 0 ..^ ( ♯ ‘ 𝑆 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							wrdfn | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  𝑆  Fn  ( 0 ..^ ( ♯ ‘ 𝑆 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ccatval1 | 
							⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  ∅  ∈  Word  𝐵  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑆 ) ) )  →  ( ( 𝑆  ++  ∅ ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 15 | 
							
								1 14
							 | 
							mp3an2 | 
							⊢ ( ( 𝑆  ∈  Word  𝐵  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑆 ) ) )  →  ( ( 𝑆  ++  ∅ ) ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑥 ) )  | 
						
						
							| 16 | 
							
								12 13 15
							 | 
							eqfnfvd | 
							⊢ ( 𝑆  ∈  Word  𝐵  →  ( 𝑆  ++  ∅ )  =  𝑆 )  |