| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐵 |
| 2 |
|
ccatvalfn |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵 ) → ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) |
| 4 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 5 |
4
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) = ( ( ♯ ‘ 𝑆 ) + 0 ) |
| 6 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 7 |
6
|
nn0cnd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 8 |
7
|
addridd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ( ♯ ‘ 𝑆 ) + 0 ) = ( ♯ ‘ 𝑆 ) ) |
| 9 |
5 8
|
eqtr2id |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) |
| 11 |
10
|
fneq2d |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ↔ ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ ∅ ) ) ) ) ) |
| 12 |
3 11
|
mpbird |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 13 |
|
wrdfn |
⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 14 |
|
ccatval1 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ ∅ ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ ∅ ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 15 |
1 14
|
mp3an2 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ ∅ ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 16 |
12 13 15
|
eqfnfvd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( 𝑆 ++ ∅ ) = 𝑆 ) |