Step |
Hyp |
Ref |
Expression |
1 |
|
ccatvalfn |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
2 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
4 |
2 3
|
eleqtrdi |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
6 |
2
|
nn0zd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
7 |
6
|
uzidd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
8 |
|
lencl |
⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) |
9 |
|
uzaddcl |
⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
11 |
|
elfzuzb |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) ) |
12 |
5 10 11
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
13 |
|
fzosplit |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ 𝑥 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) ) |
16 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∪ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) |
17 |
15 16
|
bitrdi |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) ) |
18 |
|
ccatval1 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
19 |
18
|
3expa |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
20 |
|
ssun1 |
⊢ ran 𝑆 ⊆ ( ran 𝑆 ∪ ran 𝑇 ) |
21 |
|
wrdfn |
⊢ ( 𝑆 ∈ Word 𝐵 → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
23 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ran 𝑆 ) |
24 |
22 23
|
sylan |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ran 𝑆 ) |
25 |
20 24
|
sselid |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
26 |
19 25
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
27 |
|
ccatval2 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) |
28 |
27
|
3expa |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) |
29 |
|
ssun2 |
⊢ ran 𝑇 ⊆ ( ran 𝑆 ∪ ran 𝑇 ) |
30 |
|
wrdfn |
⊢ ( 𝑇 ∈ Word 𝐵 → 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
32 |
|
elfzouz |
⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
33 |
|
uznn0sub |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
34 |
32 33
|
syl |
⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
35 |
34 3
|
eleqtrdi |
⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
37 |
8
|
nn0zd |
⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℤ ) |
39 |
|
elfzolt2 |
⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝑥 < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
41 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℤ ) |
42 |
41
|
zred |
⊢ ( 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → 𝑥 ∈ ℝ ) |
44 |
2
|
nn0red |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
46 |
8
|
nn0red |
⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
48 |
43 45 47
|
ltsubadd2d |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑥 − ( ♯ ‘ 𝑆 ) ) < ( ♯ ‘ 𝑇 ) ↔ 𝑥 < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
49 |
40 48
|
mpbird |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) < ( ♯ ‘ 𝑇 ) ) |
50 |
|
elfzo2 |
⊢ ( ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ↔ ( ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℤ ∧ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) < ( ♯ ‘ 𝑇 ) ) ) |
51 |
36 38 49 50
|
syl3anbrc |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
52 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ ran 𝑇 ) |
53 |
31 51 52
|
syl2an2r |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ ran 𝑇 ) |
54 |
29 53
|
sselid |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
55 |
28 54
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
56 |
26 55
|
jaodan |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
57 |
56
|
ex |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∨ 𝑥 ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) ) |
58 |
17 57
|
sylbid |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) ) |
59 |
58
|
ralrimiv |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) |
60 |
|
ffnfv |
⊢ ( ( 𝑆 ++ 𝑇 ) : ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⟶ ( ran 𝑆 ∪ ran 𝑇 ) ↔ ( ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ( ran 𝑆 ∪ ran 𝑇 ) ) ) |
61 |
1 59 60
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) : ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ⟶ ( ran 𝑆 ∪ ran 𝑇 ) ) |
62 |
61
|
frnd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran ( 𝑆 ++ 𝑇 ) ⊆ ( ran 𝑆 ∪ ran 𝑇 ) ) |
63 |
|
fzoss2 |
⊢ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
64 |
10 63
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
65 |
64
|
sselda |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
66 |
|
fnfvelrn |
⊢ ( ( ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
67 |
1 65 66
|
syl2an2r |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
68 |
19 67
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
69 |
68
|
ralrimiva |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ( 𝑆 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
70 |
|
ffnfv |
⊢ ( 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ↔ ( 𝑆 Fn ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ( 𝑆 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) ) |
71 |
22 69 70
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑆 : ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ) |
72 |
71
|
frnd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran 𝑆 ⊆ ran ( 𝑆 ++ 𝑇 ) ) |
73 |
|
ccatval3 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝑥 ) ) |
74 |
73
|
3expa |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝑥 ) ) |
75 |
|
elfzouz |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 0 ) ) |
76 |
2
|
adantr |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
77 |
|
uzaddcl |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
78 |
75 76 77
|
syl2anr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
79 |
|
nn0addcl |
⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℕ0 ) |
80 |
2 8 79
|
syl2an |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℕ0 ) |
81 |
80
|
nn0zd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ) |
83 |
|
elfzonn0 |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℕ0 ) |
84 |
83
|
nn0cnd |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℂ ) |
85 |
2
|
nn0cnd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
86 |
85
|
adantr |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
87 |
|
addcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( ♯ ‘ 𝑆 ) ∈ ℂ ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( ♯ ‘ 𝑆 ) + 𝑥 ) ) |
88 |
84 86 87
|
syl2anr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) = ( ( ♯ ‘ 𝑆 ) + 𝑥 ) ) |
89 |
83
|
nn0red |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 ∈ ℝ ) |
90 |
89
|
adantl |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
91 |
46
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑇 ) ∈ ℝ ) |
92 |
44
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
93 |
|
elfzolt2 |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝑥 < ( ♯ ‘ 𝑇 ) ) |
94 |
93
|
adantl |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑥 < ( ♯ ‘ 𝑇 ) ) |
95 |
90 91 92 94
|
ltadd2dd |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ♯ ‘ 𝑆 ) + 𝑥 ) < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
96 |
88 95
|
eqbrtrd |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
97 |
|
elfzo2 |
⊢ ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ∧ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) < ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
98 |
78 82 96 97
|
syl3anbrc |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
99 |
|
fnfvelrn |
⊢ ( ( ( 𝑆 ++ 𝑇 ) Fn ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
100 |
1 98 99
|
syl2an2r |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑥 + ( ♯ ‘ 𝑆 ) ) ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
101 |
74 100
|
eqeltrrd |
⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑇 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
102 |
101
|
ralrimiva |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ( 𝑇 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) |
103 |
|
ffnfv |
⊢ ( 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ↔ ( 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ( 𝑇 ‘ 𝑥 ) ∈ ran ( 𝑆 ++ 𝑇 ) ) ) |
104 |
31 102 103
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑇 : ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ⟶ ran ( 𝑆 ++ 𝑇 ) ) |
105 |
104
|
frnd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran 𝑇 ⊆ ran ( 𝑆 ++ 𝑇 ) ) |
106 |
72 105
|
unssd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ran 𝑆 ∪ ran 𝑇 ) ⊆ ran ( 𝑆 ++ 𝑇 ) ) |
107 |
62 106
|
eqssd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ran ( 𝑆 ++ 𝑇 ) = ( ran 𝑆 ∪ ran 𝑇 ) ) |