Metamath Proof Explorer


Theorem ccats1val1

Description: Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018) (Revised by JJ, 20-Jan-2024)

Ref Expression
Assertion ccats1val1 ( ( 𝑊 ∈ Word 𝑉𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ ⟨“ 𝑆 ”⟩ ) ‘ 𝐼 ) = ( 𝑊𝐼 ) )

Proof

Step Hyp Ref Expression
1 s1cli ⟨“ 𝑆 ”⟩ ∈ Word V
2 ccatval1 ( ( 𝑊 ∈ Word 𝑉 ∧ ⟨“ 𝑆 ”⟩ ∈ Word V ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ ⟨“ 𝑆 ”⟩ ) ‘ 𝐼 ) = ( 𝑊𝐼 ) )
3 1 2 mp3an2 ( ( 𝑊 ∈ Word 𝑉𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ ⟨“ 𝑆 ”⟩ ) ‘ 𝐼 ) = ( 𝑊𝐼 ) )