| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | s1cl | ⊢ ( 𝑆  ∈  𝑉  →  〈“ 𝑆 ”〉  ∈  Word  𝑉 ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  〈“ 𝑆 ”〉  ∈  Word  𝑉 ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 6 |  | elfzomin | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℤ  →  ( ♯ ‘ 𝑊 )  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 8 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝑆 ”〉 )  =  1 | 
						
							| 9 | 8 | oveq2i | ⊢ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) | 
						
							| 10 | 9 | oveq2i | ⊢ ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) )  =  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 11 | 7 10 | eleqtrrdi | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝐼  =  ( ♯ ‘ 𝑊 )  →  ( 𝐼  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) )  ↔  ( ♯ ‘ 𝑊 )  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( 𝐼  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) )  ↔  ( ♯ ‘ 𝑊 )  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) | 
						
							| 16 | 15 | 3adant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  𝐼  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) ) | 
						
							| 17 |  | ccatval2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  〈“ 𝑆 ”〉  ∈  Word  𝑉  ∧  𝐼  ∈  ( ( ♯ ‘ 𝑊 ) ..^ ( ( ♯ ‘ 𝑊 )  +  ( ♯ ‘ 〈“ 𝑆 ”〉 ) ) ) )  →  ( ( 𝑊  ++  〈“ 𝑆 ”〉 ) ‘ 𝐼 )  =  ( 〈“ 𝑆 ”〉 ‘ ( 𝐼  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 18 | 1 3 16 17 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  〈“ 𝑆 ”〉 ) ‘ 𝐼 )  =  ( 〈“ 𝑆 ”〉 ‘ ( 𝐼  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝐼  =  ( ♯ ‘ 𝑊 )  →  ( 𝐼  −  ( ♯ ‘ 𝑊 ) )  =  ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( 𝐼  −  ( ♯ ‘ 𝑊 ) )  =  ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 21 | 4 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 22 | 21 | subidd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑊 ) )  =  0 ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  −  ( ♯ ‘ 𝑊 ) )  =  0 ) | 
						
							| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( 𝐼  −  ( ♯ ‘ 𝑊 ) )  =  0 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( 〈“ 𝑆 ”〉 ‘ ( 𝐼  −  ( ♯ ‘ 𝑊 ) ) )  =  ( 〈“ 𝑆 ”〉 ‘ 0 ) ) | 
						
							| 26 |  | s1fv | ⊢ ( 𝑆  ∈  𝑉  →  ( 〈“ 𝑆 ”〉 ‘ 0 )  =  𝑆 ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( 〈“ 𝑆 ”〉 ‘ 0 )  =  𝑆 ) | 
						
							| 28 | 18 25 27 | 3eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑆  ∈  𝑉  ∧  𝐼  =  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑊  ++  〈“ 𝑆 ”〉 ) ‘ 𝐼 )  =  𝑆 ) |