Step |
Hyp |
Ref |
Expression |
1 |
|
simprll |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
2 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → 𝐼 < ( ♯ ‘ 𝐴 ) ) |
3 |
2
|
anim2i |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
4 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) |
5 |
|
0zd |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 0 ∈ ℤ ) |
6 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
7 |
6
|
nn0zd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
9 |
|
elfzo |
⊢ ( ( 𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
10 |
4 5 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
11 |
10
|
ad2antrl |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( 0 ≤ 𝐼 ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) ) |
12 |
3 11
|
mpbird |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
13 |
|
df-3an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ↔ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) |
14 |
1 12 13
|
sylanbrc |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) ) |
15 |
|
ccatval1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ( 𝐴 ‘ 𝐼 ) ) |
16 |
15
|
eqcomd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
17 |
14 16
|
syl |
⊢ ( ( 0 ≤ 𝐼 ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
18 |
17
|
ex |
⊢ ( 0 ≤ 𝐼 → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
19 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
20 |
|
0red |
⊢ ( 𝐼 ∈ ℤ → 0 ∈ ℝ ) |
21 |
19 20
|
ltnled |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 < 0 ↔ ¬ 0 ≤ 𝐼 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 < 0 ↔ ¬ 0 ≤ 𝐼 ) ) |
23 |
|
simpl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → 𝐴 ∈ Word 𝑉 ) |
24 |
23
|
anim1i |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
26 |
|
animorrl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) ) |
27 |
|
wrdsymb0 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) → ( 𝐴 ‘ 𝐼 ) = ∅ ) ) |
28 |
25 26 27
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ‘ 𝐼 ) = ∅ ) |
29 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ) |
30 |
29
|
anim1i |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
32 |
|
animorrl |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) ) |
33 |
|
wrdsymb0 |
⊢ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) ) |
34 |
31 32 33
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) |
35 |
28 34
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < 0 ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
36 |
35
|
ex |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 < 0 → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
37 |
22 36
|
sylbird |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ¬ 0 ≤ 𝐼 → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
38 |
37
|
com12 |
⊢ ( ¬ 0 ≤ 𝐼 → ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
39 |
38
|
adantrd |
⊢ ( ¬ 0 ≤ 𝐼 → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
40 |
18 39
|
pm2.61i |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ‘ 𝐼 ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
41 |
|
simprll |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ) |
42 |
|
id |
⊢ ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
43 |
6
|
nn0red |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
44 |
|
lenlt |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
45 |
43 19 44
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
46 |
45
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) |
47 |
46
|
biimpar |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ≤ 𝐼 ) |
48 |
42 47
|
anim12ci |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
49 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
50 |
49
|
nn0zd |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
51 |
|
zaddcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
52 |
7 50 51
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
54 |
|
elfzo |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
55 |
4 8 53 54
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
56 |
55
|
ad2antrl |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ 𝐼 ∧ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
57 |
48 56
|
mpbird |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
58 |
|
df-3an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ↔ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
59 |
41 57 58
|
sylanbrc |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) ) |
60 |
|
ccatval2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
61 |
60
|
eqcomd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
62 |
59 61
|
syl |
⊢ ( ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
63 |
62
|
ex |
⊢ ( 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
64 |
49
|
nn0red |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
65 |
|
readdcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
66 |
43 64 65
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ) |
67 |
|
lenlt |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
68 |
66 19 67
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
69 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐵 ∈ Word 𝑉 ) |
70 |
|
simpr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℤ ) |
71 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
72 |
70 71
|
zsubcld |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
73 |
72
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) |
74 |
69 73
|
jca |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) ) |
75 |
74
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) ) |
76 |
43
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
77 |
64
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
78 |
19
|
adantl |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → 𝐼 ∈ ℝ ) |
79 |
76 77 78
|
leaddsub2d |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ↔ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
80 |
79
|
biimpa |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) |
81 |
80
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐼 − ( ♯ ‘ 𝐴 ) ) < 0 ∨ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) |
82 |
|
wrdsymb0 |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐼 − ( ♯ ‘ 𝐴 ) ) < 0 ∨ ( ♯ ‘ 𝐵 ) ≤ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ∅ ) ) |
83 |
75 81 82
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ∅ ) |
84 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) ) |
85 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
87 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) |
88 |
86 87
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) |
89 |
88
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐼 < 0 ∨ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ≤ 𝐼 ) ) |
90 |
84 89 33
|
sylc |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = ∅ ) |
91 |
83 90
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
92 |
91
|
ex |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝐼 → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
93 |
68 92
|
sylbird |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
94 |
93
|
com12 |
⊢ ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
95 |
94
|
adantrd |
⊢ ( ¬ 𝐼 < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) → ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) ) |
96 |
63 95
|
pm2.61i |
⊢ ( ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) ∧ ¬ 𝐼 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
97 |
40 96
|
ifeqda |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) ) |
98 |
97
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |
99 |
98
|
3impa |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝐴 ++ 𝐵 ) ‘ 𝐼 ) = if ( 𝐼 < ( ♯ ‘ 𝐴 ) , ( 𝐴 ‘ 𝐼 ) , ( 𝐵 ‘ ( 𝐼 − ( ♯ ‘ 𝐴 ) ) ) ) ) |