Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
2 |
1
|
nn0zd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
3 |
|
lennncl |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
4 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
5 |
|
nnz |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
6 |
|
zaddcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
7 |
5 6
|
sylan2 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
8 |
|
nngt0 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → 0 < ( ♯ ‘ 𝐵 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → 0 < ( ♯ ‘ 𝐵 ) ) |
10 |
|
nnre |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
11 |
|
zre |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
12 |
|
ltaddpos |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ♯ ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
13 |
10 11 12
|
syl2anr |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 0 < ( ♯ ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
14 |
9 13
|
mpbid |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
15 |
4 7 14
|
3jca |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
16 |
2 3 15
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
17 |
16
|
3impb |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
18 |
|
fzolb |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
20 |
|
ccatval2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
21 |
19 20
|
syld3an3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
22 |
1
|
nn0cnd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
23 |
22
|
subidd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) = 0 ) |
24 |
23
|
fveq2d |
⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) = ( 𝐵 ‘ 0 ) ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) = ( 𝐵 ‘ 0 ) ) |
26 |
21 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ) |