Step |
Hyp |
Ref |
Expression |
1 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
2 |
1
|
nn0zd |
⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
3 |
2
|
anim1ci |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) ) |
5 |
|
fzo0addelr |
⊢ ( ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ℤ ) → ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
7 |
|
ccatval2 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ∈ ( ( ♯ ‘ 𝑆 ) ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) ) ) |
8 |
6 7
|
syld3an3 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) ) ) |
9 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) → 𝐼 ∈ ℤ ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝐼 ∈ ℤ ) |
11 |
10
|
zcnd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝐼 ∈ ℂ ) |
12 |
1
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
13 |
12
|
nn0cnd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
14 |
11 13
|
pncand |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) = 𝐼 ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( 𝑇 ‘ ( ( 𝐼 + ( ♯ ‘ 𝑆 ) ) − ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝐼 ) ) |
16 |
8 15
|
eqtrd |
⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝐼 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝐼 ) ) |