Metamath Proof Explorer


Theorem ccatw2s1ass

Description: Associative law for a concatenation of a word with two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatw2s1ass ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) = ( 𝑊 ++ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) )

Proof

Step Hyp Ref Expression
1 wrdv ( 𝑊 ∈ Word 𝑉𝑊 ∈ Word V )
2 s1cli ⟨“ 𝑋 ”⟩ ∈ Word V
3 2 a1i ( 𝑊 ∈ Word 𝑉 → ⟨“ 𝑋 ”⟩ ∈ Word V )
4 s1cli ⟨“ 𝑌 ”⟩ ∈ Word V
5 4 a1i ( 𝑊 ∈ Word 𝑉 → ⟨“ 𝑌 ”⟩ ∈ Word V )
6 ccatass ( ( 𝑊 ∈ Word V ∧ ⟨“ 𝑋 ”⟩ ∈ Word V ∧ ⟨“ 𝑌 ”⟩ ∈ Word V ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) = ( 𝑊 ++ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) )
7 1 3 5 6 syl3anc ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) = ( 𝑊 ++ ( ⟨“ 𝑋 ”⟩ ++ ⟨“ 𝑌 ”⟩ ) ) )