Metamath Proof Explorer


Theorem ccatw2s1cl

Description: The concatenation of a word with two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatw2s1cl ( ( 𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉 ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) ∈ Word 𝑉 )

Proof

Step Hyp Ref Expression
1 ccatws1cl ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ) → ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝑉 )
2 ccatws1cl ( ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝑉𝑌𝑉 ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) ∈ Word 𝑉 )
3 1 2 stoic3 ( ( 𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉 ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ++ ⟨“ 𝑌 ”⟩ ) ∈ Word 𝑉 )