Step |
Hyp |
Ref |
Expression |
1 |
|
ccatws1cl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) |
3 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
4 |
|
fzonn0p1 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
7 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
9 |
|
ccatws1len |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
12 |
6 8 11
|
3eltr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) ) |
14 |
|
ccats1val1 |
⊢ ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ) |
15 |
2 13 14
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ) |
16 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) |
17 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
18 |
|
eqcom |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ 𝑊 ) ) |
19 |
18
|
biimpi |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
21 |
|
ccats1val2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = 𝑋 ) |
22 |
16 17 20 21
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = 𝑋 ) |
23 |
15 22
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = 𝑋 ) |