| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatws1cl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑋  ∈  𝑉 )  →  ( 𝑊  ++  〈“ 𝑋 ”〉 )  ∈  Word  𝑉 ) | 
						
							| 2 | 1 | ad2ant2r | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝑊  ++  〈“ 𝑋 ”〉 )  ∈  Word  𝑉 ) | 
						
							| 3 |  | simprr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 4 |  | ccatws1len | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( ( ♯ ‘ 𝑊 )  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 8 | 5 7 | eqtr2d | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( 𝑁  +  1 )  =  ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) ) ) | 
						
							| 9 |  | ccats1val2 | ⊢ ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ∈  Word  𝑉  ∧  𝑌  ∈  𝑉  ∧  ( 𝑁  +  1 )  =  ( ♯ ‘ ( 𝑊  ++  〈“ 𝑋 ”〉 ) ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ ( 𝑁  +  1 ) )  =  𝑌 ) | 
						
							| 10 | 2 3 8 9 | syl3anc | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( ( ( 𝑊  ++  〈“ 𝑋 ”〉 )  ++  〈“ 𝑌 ”〉 ) ‘ ( 𝑁  +  1 ) )  =  𝑌 ) |