Metamath Proof Explorer


Theorem ccatws1ls

Description: The last symbol of the concatenation of a word with a singleton word is the symbol of the singleton word. (Contributed by AV, 29-Sep-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion ccatws1ls ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ‘ ( ♯ ‘ 𝑊 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 eqidd ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) )
2 ccats1val2 ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ‘ ( ♯ ‘ 𝑊 ) ) = 𝑋 )
3 1 2 mpd3an3 ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ) → ( ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ‘ ( ♯ ‘ 𝑊 ) ) = 𝑋 )