| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difeq2 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ∪ 𝑦 ) ) |
| 2 |
1
|
breq1d |
⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = ∅ ↔ ∪ 𝑦 = ∅ ) ) |
| 4 |
2 3
|
orbi12d |
⊢ ( 𝑥 = ∪ 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ∨ ∪ 𝑦 = ∅ ) ) ) |
| 5 |
|
uniss |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 6 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 |
| 7 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
| 8 |
6 7
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝐴 |
| 9 |
5 8
|
sstrdi |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ⊆ 𝐴 ) |
| 10 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
| 11 |
10
|
elpw |
⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 12 |
9 11
|
sylibr |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
| 13 |
|
uni0c |
⊢ ( ∪ 𝑦 = ∅ ↔ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
| 14 |
13
|
notbii |
⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
| 15 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀ 𝑧 ∈ 𝑦 𝑧 = ∅ ) |
| 16 |
14 15
|
bitr4i |
⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ ) |
| 17 |
|
ssel2 |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 18 |
|
difeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑧 ) ) |
| 19 |
18
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝑧 ) ≼ ω ) ) |
| 20 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ∅ ↔ 𝑧 = ∅ ) ) |
| 21 |
19 20
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) |
| 22 |
21
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) |
| 23 |
17 22
|
sylib |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) |
| 24 |
23
|
simprd |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) |
| 25 |
24
|
ord |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ ( 𝐴 ∖ 𝑧 ) ≼ ω → 𝑧 = ∅ ) ) |
| 26 |
25
|
con1d |
⊢ ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) → ( ¬ 𝑧 = ∅ → ( 𝐴 ∖ 𝑧 ) ≼ ω ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ 𝑧 ) ≼ ω ) |
| 28 |
|
ctex |
⊢ ( ( 𝐴 ∖ 𝑧 ) ≼ ω → ( 𝐴 ∖ 𝑧 ) ∈ V ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ 𝑧 ) ∈ V ) |
| 30 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → 𝑧 ∈ 𝑦 ) |
| 31 |
|
elssuni |
⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ⊆ ∪ 𝑦 ) |
| 32 |
|
sscon |
⊢ ( 𝑧 ⊆ ∪ 𝑦 → ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) |
| 33 |
30 31 32
|
3syl |
⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) ) |
| 34 |
|
ssdomg |
⊢ ( ( 𝐴 ∖ 𝑧 ) ∈ V → ( ( 𝐴 ∖ ∪ 𝑦 ) ⊆ ( 𝐴 ∖ 𝑧 ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ( 𝐴 ∖ 𝑧 ) ) ) |
| 35 |
29 33 34
|
sylc |
⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ( 𝐴 ∖ 𝑧 ) ) |
| 36 |
|
domtr |
⊢ ( ( ( 𝐴 ∖ ∪ 𝑦 ) ≼ ( 𝐴 ∖ 𝑧 ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) |
| 37 |
35 36
|
sylancom |
⊢ ( ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) |
| 38 |
27 37
|
mpdan |
⊢ ( ( ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ 𝑦 ) ∧ ¬ 𝑧 = ∅ ) → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) |
| 39 |
38
|
rexlimdva2 |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ∃ 𝑧 ∈ 𝑦 ¬ 𝑧 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) ) |
| 40 |
16 39
|
biimtrid |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ¬ ∪ 𝑦 = ∅ → ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ) ) |
| 41 |
40
|
con1d |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ¬ ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω → ∪ 𝑦 = ∅ ) ) |
| 42 |
41
|
orrd |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ( ( 𝐴 ∖ ∪ 𝑦 ) ≼ ω ∨ ∪ 𝑦 = ∅ ) ) |
| 43 |
4 12 42
|
elrabd |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 44 |
43
|
ax-gen |
⊢ ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 45 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑦 ) ) |
| 46 |
45
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝑦 ) ≼ ω ) ) |
| 47 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
| 48 |
46 47
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ) |
| 49 |
48
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ) |
| 50 |
|
ssinss1 |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 51 |
|
vex |
⊢ 𝑦 ∈ V |
| 52 |
51
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 53 |
51
|
inex1 |
⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
| 54 |
53
|
elpw |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 55 |
50 52 54
|
3imtr4i |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 57 |
|
difindi |
⊢ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) = ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) |
| 58 |
|
unctb |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( ( 𝐴 ∖ 𝑦 ) ∪ ( 𝐴 ∖ 𝑧 ) ) ≼ ω ) |
| 59 |
57 58
|
eqbrtrid |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ) |
| 60 |
59
|
orcd |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∧ ( 𝐴 ∖ 𝑧 ) ≼ ω ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 61 |
|
ineq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( ∅ ∩ 𝑧 ) ) |
| 62 |
|
0in |
⊢ ( ∅ ∩ 𝑧 ) = ∅ |
| 63 |
61 62
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 64 |
63
|
olcd |
⊢ ( 𝑦 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 65 |
|
ineq2 |
⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ( 𝑦 ∩ ∅ ) ) |
| 66 |
|
in0 |
⊢ ( 𝑦 ∩ ∅ ) = ∅ |
| 67 |
65 66
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
| 68 |
67
|
olcd |
⊢ ( 𝑧 = ∅ → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 69 |
60 64 68
|
ccase2 |
⊢ ( ( ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 70 |
69
|
ad2ant2l |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) → ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 71 |
56 70
|
jca |
⊢ ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑦 ) ≼ ω ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ 𝑧 ) ≼ ω ∨ 𝑧 = ∅ ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 72 |
49 22 71
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 73 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ) |
| 74 |
73
|
breq1d |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ) ) |
| 75 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
| 76 |
74 75
|
orbi12d |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 77 |
76
|
elrab |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ( 𝐴 ∖ ( 𝑦 ∩ 𝑧 ) ) ≼ ω ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
| 78 |
72 77
|
sylibr |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 79 |
78
|
rgen2 |
⊢ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } |
| 80 |
44 79
|
pm3.2i |
⊢ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 81 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
| 82 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ V ) |
| 83 |
|
istopg |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ) ) |
| 84 |
81 82 83
|
3syl |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ) ) |
| 85 |
80 84
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ) |
| 86 |
|
difeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐴 ) ) |
| 87 |
|
difid |
⊢ ( 𝐴 ∖ 𝐴 ) = ∅ |
| 88 |
86 87
|
eqtrdi |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∖ 𝑥 ) = ∅ ) |
| 89 |
88
|
breq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ∅ ≼ ω ) ) |
| 90 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) |
| 91 |
89 90
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) ↔ ( ∅ ≼ ω ∨ 𝐴 = ∅ ) ) ) |
| 92 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) |
| 93 |
|
omex |
⊢ ω ∈ V |
| 94 |
93
|
0dom |
⊢ ∅ ≼ ω |
| 95 |
94
|
orci |
⊢ ( ∅ ≼ ω ∨ 𝐴 = ∅ ) |
| 96 |
95
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≼ ω ∨ 𝐴 = ∅ ) ) |
| 97 |
91 92 96
|
elrabd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 98 |
|
elssuni |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 99 |
97 98
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 100 |
8
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
| 101 |
99 100
|
eqssd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) |
| 102 |
|
istopon |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ) ) |
| 103 |
85 101 102
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝒫 𝐴 ∣ ( ( 𝐴 ∖ 𝑥 ) ≼ ω ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |