Metamath Proof Explorer


Theorem cdaf

Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
arwdm.b 𝐵 = ( Base ‘ 𝐶 )
Assertion cdaf ( coda𝐴 ) : 𝐴𝐵

Proof

Step Hyp Ref Expression
1 arwrcl.a 𝐴 = ( Arrow ‘ 𝐶 )
2 arwdm.b 𝐵 = ( Base ‘ 𝐶 )
3 fo2nd 2nd : V –onto→ V
4 fofn ( 2nd : V –onto→ V → 2nd Fn V )
5 3 4 ax-mp 2nd Fn V
6 fo1st 1st : V –onto→ V
7 fof ( 1st : V –onto→ V → 1st : V ⟶ V )
8 6 7 ax-mp 1st : V ⟶ V
9 fnfco ( ( 2nd Fn V ∧ 1st : V ⟶ V ) → ( 2nd ∘ 1st ) Fn V )
10 5 8 9 mp2an ( 2nd ∘ 1st ) Fn V
11 df-coda coda = ( 2nd ∘ 1st )
12 11 fneq1i ( coda Fn V ↔ ( 2nd ∘ 1st ) Fn V )
13 10 12 mpbir coda Fn V
14 ssv 𝐴 ⊆ V
15 fnssres ( ( coda Fn V ∧ 𝐴 ⊆ V ) → ( coda𝐴 ) Fn 𝐴 )
16 13 14 15 mp2an ( coda𝐴 ) Fn 𝐴
17 fvres ( 𝑥𝐴 → ( ( coda𝐴 ) ‘ 𝑥 ) = ( coda𝑥 ) )
18 1 2 arwcd ( 𝑥𝐴 → ( coda𝑥 ) ∈ 𝐵 )
19 17 18 eqeltrd ( 𝑥𝐴 → ( ( coda𝐴 ) ‘ 𝑥 ) ∈ 𝐵 )
20 19 rgen 𝑥𝐴 ( ( coda𝐴 ) ‘ 𝑥 ) ∈ 𝐵
21 ffnfv ( ( coda𝐴 ) : 𝐴𝐵 ↔ ( ( coda𝐴 ) Fn 𝐴 ∧ ∀ 𝑥𝐴 ( ( coda𝐴 ) ‘ 𝑥 ) ∈ 𝐵 ) )
22 16 20 21 mpbir2an ( coda𝐴 ) : 𝐴𝐵