Metamath Proof Explorer


Theorem cdlemb

Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in Crawley p. 112. (Contributed by NM, 8-May-2012)

Ref Expression
Hypotheses cdlemb.b 𝐵 = ( Base ‘ 𝐾 )
cdlemb.l = ( le ‘ 𝐾 )
cdlemb.j = ( join ‘ 𝐾 )
cdlemb.u 1 = ( 1. ‘ 𝐾 )
cdlemb.c 𝐶 = ( ⋖ ‘ 𝐾 )
cdlemb.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cdlemb ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemb.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemb.l = ( le ‘ 𝐾 )
3 cdlemb.j = ( join ‘ 𝐾 )
4 cdlemb.u 1 = ( 1. ‘ 𝐾 )
5 cdlemb.c 𝐶 = ( ⋖ ‘ 𝐾 )
6 cdlemb.a 𝐴 = ( Atoms ‘ 𝐾 )
7 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝐾 ∈ HL )
8 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑃𝐴 )
9 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑄𝐴 )
10 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑋𝐵 )
11 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑃𝑄 )
12 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑋 𝐶 1 )
13 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ¬ 𝑃 𝑋 )
14 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
15 1 2 3 14 4 5 6 1cvrat ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ( 𝑃𝑄𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ) ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴 )
16 7 8 9 10 11 12 13 15 syl133anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴 )
17 7 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝐾 ∈ Lat )
18 1 6 atbase ( 𝑃𝐴𝑃𝐵 )
19 8 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑃𝐵 )
20 1 6 atbase ( 𝑄𝐴𝑄𝐵 )
21 9 20 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑄𝐵 )
22 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
23 17 19 21 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
24 1 2 14 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) 𝑋 )
25 17 23 10 24 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) 𝑋 )
26 eqid ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 )
27 1 2 26 4 5 6 1cvratlt ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴𝑋𝐵 ) ∧ ( 𝑋 𝐶 1 ∧ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) 𝑋 ) ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ( lt ‘ 𝐾 ) 𝑋 )
28 7 16 10 12 25 27 syl32anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ( lt ‘ 𝐾 ) 𝑋 )
29 1 26 6 2atlt ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴𝑋𝐵 ) ∧ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ( lt ‘ 𝐾 ) 𝑋 ) → ∃ 𝑢𝐴 ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) )
30 7 16 10 28 29 syl31anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ∃ 𝑢𝐴 ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) )
31 simpl11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝐾 ∈ HL )
32 simpl12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑃𝐴 )
33 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑢𝐴 )
34 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ¬ 𝑃 𝑋 )
35 simprrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑢 ( lt ‘ 𝐾 ) 𝑋 )
36 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑋𝐵 )
37 2 26 pltle ( ( 𝐾 ∈ HL ∧ 𝑢𝐴𝑋𝐵 ) → ( 𝑢 ( lt ‘ 𝐾 ) 𝑋𝑢 𝑋 ) )
38 31 33 36 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑢 ( lt ‘ 𝐾 ) 𝑋𝑢 𝑋 ) )
39 35 38 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑢 𝑋 )
40 breq1 ( 𝑃 = 𝑢 → ( 𝑃 𝑋𝑢 𝑋 ) )
41 39 40 syl5ibrcom ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑃 = 𝑢𝑃 𝑋 ) )
42 41 necon3bd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( ¬ 𝑃 𝑋𝑃𝑢 ) )
43 34 42 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑃𝑢 )
44 2 3 6 hlsupr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑢𝐴 ) ∧ 𝑃𝑢 ) → ∃ 𝑟𝐴 ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) )
45 31 32 33 43 44 syl31anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ∃ 𝑟𝐴 ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) )
46 eqid ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 )
47 1 2 3 4 5 6 26 14 46 cdlemblem ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ∧ ( 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) ) ) → ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )
48 47 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) → ( ( 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) ) → ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) ) )
49 48 exp4a ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) → ( 𝑟𝐴 → ( ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) → ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) ) ) )
50 49 imp ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑟𝐴 → ( ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) → ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) ) )
51 50 reximdvai ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( ∃ 𝑟𝐴 ( 𝑟𝑃𝑟𝑢𝑟 ( 𝑃 𝑢 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) ) )
52 45 51 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ ( 𝑢𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )
53 30 52 rexlimddv ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ∃ 𝑟𝐴 ( ¬ 𝑟 𝑋 ∧ ¬ 𝑟 ( 𝑃 𝑄 ) ) )