Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemb.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemb.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemb.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
5 |
|
cdlemb.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
6 |
|
cdlemb.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ HL ) |
8 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑄 ∈ 𝐴 ) |
10 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
11 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≠ 𝑄 ) |
12 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑋 𝐶 1 ) |
13 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ¬ 𝑃 ≤ 𝑋 ) |
14 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
15 |
1 2 3 14 4 5 6
|
1cvrat |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴 ) |
16 |
7 8 9 10 11 12 13 15
|
syl133anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴 ) |
17 |
7
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ Lat ) |
18 |
1 6
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
19 |
8 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐵 ) |
20 |
1 6
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
21 |
9 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑄 ∈ 𝐵 ) |
22 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
23 |
17 19 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
24 |
1 2 14
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ≤ 𝑋 ) |
25 |
17 23 10 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ≤ 𝑋 ) |
26 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
27 |
1 2 26 4 5 6
|
1cvratlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 𝐶 1 ∧ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ( lt ‘ 𝐾 ) 𝑋 ) |
28 |
7 16 10 12 25 27
|
syl32anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ( lt ‘ 𝐾 ) 𝑋 ) |
29 |
1 26 6
|
2atlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ( lt ‘ 𝐾 ) 𝑋 ) → ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) |
30 |
7 16 10 28 29
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) |
31 |
|
simpl11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝐾 ∈ HL ) |
32 |
|
simpl12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑃 ∈ 𝐴 ) |
33 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑢 ∈ 𝐴 ) |
34 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ¬ 𝑃 ≤ 𝑋 ) |
35 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) |
36 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
37 |
2 26
|
pltle |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑢 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑢 ( lt ‘ 𝐾 ) 𝑋 → 𝑢 ≤ 𝑋 ) ) |
38 |
31 33 36 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑢 ( lt ‘ 𝐾 ) 𝑋 → 𝑢 ≤ 𝑋 ) ) |
39 |
35 38
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑢 ≤ 𝑋 ) |
40 |
|
breq1 |
⊢ ( 𝑃 = 𝑢 → ( 𝑃 ≤ 𝑋 ↔ 𝑢 ≤ 𝑋 ) ) |
41 |
39 40
|
syl5ibrcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑃 = 𝑢 → 𝑃 ≤ 𝑋 ) ) |
42 |
41
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( ¬ 𝑃 ≤ 𝑋 → 𝑃 ≠ 𝑢 ) ) |
43 |
34 42
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → 𝑃 ≠ 𝑢 ) |
44 |
2 3 6
|
hlsupr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑢 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) ) |
45 |
31 32 33 43 44
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) ) |
46 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) |
47 |
1 2 3 4 5 6 26 14 46
|
cdlemblem |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) ) ) → ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
48 |
47
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) → ( ( 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) ) → ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
49 |
48
|
exp4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) → ( 𝑟 ∈ 𝐴 → ( ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) → ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( 𝑟 ∈ 𝐴 → ( ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) → ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
51 |
50
|
reximdvai |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ( ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑢 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑢 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
52 |
45 51
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( 𝑢 ≠ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ∧ 𝑢 ( lt ‘ 𝐾 ) 𝑋 ) ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
53 |
30 52
|
rexlimddv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑋 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |