Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemg5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
7 |
1 2 3 4
|
cdlemg5 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊 ) ) |
9 |
|
ancom |
⊢ ( ( 𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊 ) ↔ ( ¬ 𝑟 ≤ 𝑊 ∧ 𝑃 ≠ 𝑟 ) ) |
10 |
|
eqcom |
⊢ ( 𝑃 = 𝑟 ↔ 𝑟 = 𝑃 ) |
11 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → 𝑃 = 𝑄 ) |
12 |
11
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑄 ) ) |
13 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
14 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
15 |
2 3
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
17 |
12 16
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = 𝑃 ) |
18 |
17
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑟 ≤ 𝑃 ) ) |
19 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
20 |
13 19
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
21 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐴 ) |
22 |
1 3
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑃 ↔ 𝑟 = 𝑃 ) ) |
23 |
20 21 14 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑃 ↔ 𝑟 = 𝑃 ) ) |
24 |
18 23
|
bitr2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 = 𝑃 ↔ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
25 |
10 24
|
syl5bb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 = 𝑟 ↔ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
26 |
25
|
necon3abid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑟 ↔ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
27 |
26
|
anbi2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( ( ¬ 𝑟 ≤ 𝑊 ∧ 𝑃 ≠ 𝑟 ) ↔ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
28 |
9 27
|
syl5bb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴 ) → ( ( 𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊 ) ↔ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
29 |
28
|
3expa |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ) ∧ 𝑟 ∈ 𝐴 ) → ( ( 𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊 ) ↔ ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
30 |
29
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( ∃ 𝑟 ∈ 𝐴 ( 𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊 ) ↔ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
31 |
8 30
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
32 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
34 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
35 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ≠ 𝑄 ) |
36 |
1 2 3 4
|
cdlemb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
37 |
32 33 34 35 36
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
38 |
31 37
|
pm2.61dane |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |