| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemc3.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemc3.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemc3.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemc3.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemc3.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemc3.t | 
							⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemc3.r | 
							⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7
							 | 
							cdlemc6 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7
							 | 
							cdlemc5 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 18 | 
							
								13 14 15 16 17
							 | 
							syl112anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							pm2.61dane | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  |