Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemc2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemc2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemc2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemc2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemc2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
8 |
|
simp3ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simp3rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑄 ∈ 𝐴 ) |
10 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
12 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
15 |
9 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
17 |
13 1 2 3 4 5
|
cdlemc1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
18 |
12 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
19 |
11 18
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
20 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝐹 ∈ 𝑇 ) |
21 |
7
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
22 |
13 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
23 |
8 22
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
24 |
13 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
21 23 15 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
27 |
13 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
29 |
13 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
21 25 28 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
13 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
21 23 30 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
13 1 5 6
|
ltrnle |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑄 ≤ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ↔ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) ) |
34 |
12 20 15 32 33
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝑄 ≤ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ↔ ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) ) |
35 |
19 34
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
36 |
13 2 5 6
|
ltrnj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
37 |
12 20 23 30 36
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |
38 |
13 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
39 |
21 25 28 38
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
40 |
13 1 5 6
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
41 |
12 20 30 39 40
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
43 |
37 42
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
44 |
35 43
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ 𝑄 ) ≤ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |