Metamath Proof Explorer


Theorem cdlemc3

Description: Part of proof of Lemma C in Crawley p. 113. (Contributed by NM, 26-May-2012)

Ref Expression
Hypotheses cdlemc3.l = ( le ‘ 𝐾 )
cdlemc3.j = ( join ‘ 𝐾 )
cdlemc3.m = ( meet ‘ 𝐾 )
cdlemc3.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemc3.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemc3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemc3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemc3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝐹𝑃 ) ( 𝑄 ( 𝑅𝐹 ) ) → 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemc3.l = ( le ‘ 𝐾 )
2 cdlemc3.j = ( join ‘ 𝐾 )
3 cdlemc3.m = ( meet ‘ 𝐾 )
4 cdlemc3.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemc3.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemc3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemc3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝐾 ∈ HL )
9 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simpr1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝐹𝑇 )
11 simpr2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑃𝐴 )
12 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐴 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
13 9 10 11 12 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝐹𝑃 ) ∈ 𝐴 )
14 simpr3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → 𝑄𝐴 )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 15 5 6 7 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → ( 𝑅𝐹 ) ∈ ( Base ‘ 𝐾 ) )
17 10 16 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑅𝐹 ) ∈ ( Base ‘ 𝐾 ) )
18 1 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
19 18 3adant3r3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) )
20 1 4 5 6 7 trlnle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐹𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑃 ) 𝑊 ) ) → ¬ ( 𝐹𝑃 ) ( 𝑅𝐹 ) )
21 9 10 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ¬ ( 𝐹𝑃 ) ( 𝑅𝐹 ) )
22 15 1 2 4 hlexch2 ( ( 𝐾 ∈ HL ∧ ( ( 𝐹𝑃 ) ∈ 𝐴𝑄𝐴 ∧ ( 𝑅𝐹 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) → ( ( 𝐹𝑃 ) ( 𝑄 ( 𝑅𝐹 ) ) → 𝑄 ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ) )
23 8 13 14 17 21 22 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝐹𝑃 ) ( 𝑄 ( 𝑅𝐹 ) ) → 𝑄 ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ) )
24 1 2 4 5 6 7 trljat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
25 24 3adant3r3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝐹𝑃 ) ) )
26 25 breq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( 𝑄 ( ( 𝐹𝑃 ) ( 𝑅𝐹 ) ) ↔ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) )
27 23 26 sylibd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ) → ( ( 𝐹𝑃 ) ( 𝑄 ( 𝑅𝐹 ) ) → 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) )