| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemc3.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemc3.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemc3.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemc3.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemc3.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemc3.t | 
							⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemc3.r | 
							⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 9 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐹  ∈  𝑇 )  | 
						
						
							| 12 | 
							
								1 4 5 6
							 | 
							ltrnat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑄  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								10 11 9 12
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝑄  ∨  ( 𝐹 ‘ 𝑄 ) ) )  | 
						
						
							| 15 | 
							
								8 9 13 14
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝑄  ∨  ( 𝐹 ‘ 𝑄 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 17 | 
							
								1 2 4 5 6 7
							 | 
							trljat1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑄 ) ) )  | 
						
						
							| 18 | 
							
								10 11 16 17
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  ( 𝑄  ∨  ( 𝐹 ‘ 𝑄 ) ) )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							breqtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6
							 | 
							cdlemc2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 22 | 
							
								10 11 20 16 21
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 23 | 
							
								8
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 25 | 
							
								24 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								9 25
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								24 5 6
							 | 
							ltrncl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								10 11 26 27
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								24 5 6 7
							 | 
							trlcl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								10 11 29
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								24 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅 ‘ 𝐹 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								23 26 30 31
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 34 | 
							
								24 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 36 | 
							
								24 5 6
							 | 
							ltrncl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 37 | 
							
								10 11 35 36
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 38 | 
							
								24 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 39 | 
							
								8 33 9 38
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 41 | 
							
								24 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								24 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								23 39 42 43
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								24 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								23 37 44 45
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								24 1 3
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝐹 ‘ 𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ↔  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 48 | 
							
								23 28 32 46 47
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( ( 𝐹 ‘ 𝑄 )  ≤  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ↔  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 49 | 
							
								19 22 48
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							hlatl | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat )  | 
						
						
							| 51 | 
							
								8 50
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝐾  ∈  AtLat )  | 
						
						
							| 52 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 )  | 
						
						
							| 53 | 
							
								1 4 5 6 7
							 | 
							trlat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 )  | 
						
						
							| 54 | 
							
								10 20 11 52 53
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 )  | 
						
						
							| 55 | 
							
								1 5 6 7
							 | 
							trlle | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇 )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 )  | 
						
						
							| 56 | 
							
								10 11 55
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  ≤  𝑊 )  | 
						
						
							| 57 | 
							
								
							 | 
							simp23r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ¬  𝑄  ≤  𝑊 )  | 
						
						
							| 58 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( ( 𝑅 ‘ 𝐹 )  ≤  𝑊  ∧  ¬  𝑄  ≤  𝑊 )  →  ( 𝑅 ‘ 𝐹 )  ≠  𝑄 )  | 
						
						
							| 59 | 
							
								58
							 | 
							necomd | 
							⊢ ( ( ( 𝑅 ‘ 𝐹 )  ≤  𝑊  ∧  ¬  𝑄  ≤  𝑊 )  →  𝑄  ≠  ( 𝑅 ‘ 𝐹 ) )  | 
						
						
							| 60 | 
							
								56 57 59
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑄  ≠  ( 𝑅 ‘ 𝐹 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							eqid | 
							⊢ ( LLines ‘ 𝐾 )  =  ( LLines ‘ 𝐾 )  | 
						
						
							| 62 | 
							
								2 4 61
							 | 
							llni2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  ( 𝑅 ‘ 𝐹 )  ∈  𝐴 )  ∧  𝑄  ≠  ( 𝑅 ‘ 𝐹 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( LLines ‘ 𝐾 ) )  | 
						
						
							| 63 | 
							
								8 9 54 60 62
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( LLines ‘ 𝐾 ) )  | 
						
						
							| 64 | 
							
								1 4 5 6
							 | 
							ltrnat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑃  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 )  | 
						
						
							| 65 | 
							
								10 11 33 64
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 )  | 
						
						
							| 66 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  | 
						
						
							| 67 | 
							
								8 33 65 66
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑃  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑃  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 70 | 
							
								67 68 69
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 71 | 
							
								1 2 3 4 5
							 | 
							lhpat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 )  | 
						
						
							| 72 | 
							
								10 20 9 70 71
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 )  | 
						
						
							| 73 | 
							
								24 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 74 | 
							
								23 39 42 73
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 75 | 
							
								1 4 5 6
							 | 
							ltrnel | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							simprd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 )  | 
						
						
							| 77 | 
							
								10 11 20 76
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 )  | 
						
						
							| 78 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊  ∧  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≠  ( 𝐹 ‘ 𝑃 ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							necomd | 
							⊢ ( ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊  ∧  ¬  ( 𝐹 ‘ 𝑃 )  ≤  𝑊 )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  | 
						
						
							| 80 | 
							
								74 77 79
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑃 )  ≠  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  | 
						
						
							| 81 | 
							
								2 4 61
							 | 
							llni2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝐴  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( LLines ‘ 𝐾 ) )  | 
						
						
							| 82 | 
							
								8 65 72 80 81
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( LLines ‘ 𝐾 ) )  | 
						
						
							| 83 | 
							
								1 2 3 4 5 6 7
							 | 
							cdlemc4 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ≠  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							3adant3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ≠  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 85 | 
							
								24 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 86 | 
							
								23 32 46 85
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 87 | 
							
								
							 | 
							eqid | 
							⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 )  | 
						
						
							| 88 | 
							
								24 1 87 4
							 | 
							atlen0 | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ≠  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 89 | 
							
								51 86 13 49 88
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ≠  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 90 | 
							
								3 87 4 61
							 | 
							2llnmat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∈  ( LLines ‘ 𝐾 )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∈  ( LLines ‘ 𝐾 ) )  ∧  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ≠  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  ∧  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ≠  ( 0. ‘ 𝐾 ) ) )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ∈  𝐴 )  | 
						
						
							| 91 | 
							
								8 63 82 84 89 90
							 | 
							syl32anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ∈  𝐴 )  | 
						
						
							| 92 | 
							
								1 4
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  ( 𝐹 ‘ 𝑄 )  ∈  𝐴  ∧  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ↔  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 93 | 
							
								51 13 91 92
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( ( 𝐹 ‘ 𝑄 )  ≤  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  ↔  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 94 | 
							
								49 93
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝐹 ‘ 𝑃 )  ≠  𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  |