Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemc3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemc3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemc3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemc3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemc3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemc3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemc3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ HL ) |
9 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑃 ∈ 𝐴 ) |
10 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑄 ∈ 𝐴 ) |
11 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
13 |
12
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( 𝑄 ∧ ( 𝑄 ∨ 𝑃 ) ) ) |
14 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ Lat ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
16 |
15 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
17 |
10 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
18 |
15 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
19 |
9 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
20 |
15 2 3
|
latabs2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∧ ( 𝑄 ∨ 𝑃 ) ) = 𝑄 ) |
21 |
14 17 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∧ ( 𝑄 ∨ 𝑃 ) ) = 𝑄 ) |
22 |
13 21
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∧ ( 𝑃 ∨ 𝑄 ) ) = 𝑄 ) |
23 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
25 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐹 ∈ 𝑇 ) |
26 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑃 ) = 𝑃 ) |
27 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
28 |
1 27 4 5 6 7
|
trl0 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
29 |
23 24 25 26 28
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑅 ‘ 𝐹 ) = ( 0. ‘ 𝐾 ) ) |
30 |
29
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) = ( 𝑄 ∨ ( 0. ‘ 𝐾 ) ) ) |
31 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
32 |
8 31
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝐾 ∈ OL ) |
33 |
15 2 27
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( 0. ‘ 𝐾 ) ) = 𝑄 ) |
34 |
32 17 33
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 0. ‘ 𝐾 ) ) = 𝑄 ) |
35 |
30 34
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) = 𝑄 ) |
36 |
26
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
37 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
8 9 10 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑊 ∈ 𝐻 ) |
40 |
15 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
41 |
39 40
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
42 |
15 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
14 38 41 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
15 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑃 ) ) |
45 |
14 19 43 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑃 ) ) |
46 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
47 |
8 9 10 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
48 |
15 1 2 3 4
|
atmod2i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑊 ∨ 𝑃 ) ) ) |
49 |
8 9 38 41 47 48
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑊 ∨ 𝑃 ) ) ) |
50 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
51 |
1 2 50 4 5
|
lhpjat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑊 ∨ 𝑃 ) = ( 1. ‘ 𝐾 ) ) |
52 |
8 39 24 51
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝑊 ∨ 𝑃 ) = ( 1. ‘ 𝐾 ) ) |
53 |
52
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑊 ∨ 𝑃 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
54 |
15 3 50
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
55 |
32 38 54
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
56 |
49 53 55
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∨ 𝑃 ) = ( 𝑃 ∨ 𝑄 ) ) |
57 |
36 45 56
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
58 |
35 57
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) = ( 𝑄 ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
59 |
1 4 5 6
|
ltrnateq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑄 ) = 𝑄 ) |
60 |
22 58 59
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ‘ 𝑃 ) = 𝑃 ) → ( 𝐹 ‘ 𝑄 ) = ( ( 𝑄 ∨ ( 𝑅 ‘ 𝐹 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) ) |