| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemc3.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemc3.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemc3.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemc3.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemc3.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemc3.t | 
							⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemc3.r | 
							⊢ 𝑅  =  ( ( trL ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  HL )  | 
						
						
							| 9 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								2 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 12 | 
							
								8 9 10 11
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∧  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑄  ∧  ( 𝑄  ∨  𝑃 ) ) )  | 
						
						
							| 14 | 
							
								8
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  Lat )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 16 | 
							
								15 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								15 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								15 2 3
							 | 
							latabs2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∧  ( 𝑄  ∨  𝑃 ) )  =  𝑄 )  | 
						
						
							| 21 | 
							
								14 17 19 20
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∧  ( 𝑄  ∨  𝑃 ) )  =  𝑄 )  | 
						
						
							| 22 | 
							
								13 21
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∧  ( 𝑃  ∨  𝑄 ) )  =  𝑄 )  | 
						
						
							| 23 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐹  ∈  𝑇 )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 )  | 
						
						
							| 28 | 
							
								1 27 4 5 6 7
							 | 
							trl0 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 ) )  →  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								23 24 25 26 28
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑅 ‘ 𝐹 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 32 | 
							
								8 31
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝐾  ∈  OL )  | 
						
						
							| 33 | 
							
								15 2 27
							 | 
							olj01 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) )  =  𝑄 )  | 
						
						
							| 34 | 
							
								32 17 33
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 0. ‘ 𝐾 ) )  =  𝑄 )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  =  𝑄 )  | 
						
						
							| 36 | 
							
								26
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 37 | 
							
								15 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 38 | 
							
								8 9 10 37
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 40 | 
							
								15 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 42 | 
							
								15 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								14 38 41 42
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								15 2
							 | 
							latjcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 ) )  | 
						
						
							| 45 | 
							
								14 19 43 44
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 ) )  | 
						
						
							| 46 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 47 | 
							
								8 9 10 46
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 48 | 
							
								15 1 2 3 4
							 | 
							atmod2i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑊  ∨  𝑃 ) ) )  | 
						
						
							| 49 | 
							
								8 9 38 41 47 48
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑊  ∨  𝑃 ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							eqid | 
							⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 )  | 
						
						
							| 51 | 
							
								1 2 50 4 5
							 | 
							lhpjat1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑃 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 52 | 
							
								8 39 24 51
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝑊  ∨  𝑃 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑊  ∨  𝑃 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 54 | 
							
								15 3 50
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 55 | 
							
								32 38 54
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 56 | 
							
								49 53 55
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ∨  𝑃 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 57 | 
							
								36 45 56
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 58 | 
							
								35 57
							 | 
							oveq12d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  =  ( 𝑄  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 59 | 
							
								1 4 5 6
							 | 
							ltrnateq | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  𝑄 )  | 
						
						
							| 60 | 
							
								22 58 59
							 | 
							3eqtr4rd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  𝑃 )  →  ( 𝐹 ‘ 𝑄 )  =  ( ( 𝑄  ∨  ( 𝑅 ‘ 𝐹 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) ) )  |