Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemd.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemd.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemd.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → 𝐹 ∈ 𝑇 ) |
7 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → 𝐺 ∈ 𝑇 ) |
8 |
6 7
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) |
9 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → 𝑞 ∈ 𝐴 ) |
10 |
|
simpl2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
11 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
12 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
13 |
1 12 2 3 4
|
cdlemd9 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑞 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) → ( 𝐹 ‘ 𝑞 ) = ( 𝐺 ‘ 𝑞 ) ) |
14 |
5 8 9 10 11 13
|
syl311anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑞 ) = ( 𝐺 ‘ 𝑞 ) ) |
15 |
14
|
ralrimiva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) → ∀ 𝑞 ∈ 𝐴 ( 𝐹 ‘ 𝑞 ) = ( 𝐺 ‘ 𝑞 ) ) |
16 |
2 3 4
|
ltrneq2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( ∀ 𝑞 ∈ 𝐴 ( 𝐹 ‘ 𝑞 ) = ( 𝐺 ‘ 𝑞 ) ↔ 𝐹 = 𝐺 ) ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) → ( ∀ 𝑞 ∈ 𝐴 ( 𝐹 ‘ 𝑞 ) = ( 𝐺 ‘ 𝑞 ) ↔ 𝐹 = 𝐺 ) ) |
18 |
15 17
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) → 𝐹 = 𝐺 ) |