| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd1.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd1.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd1.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd1.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simpr1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr2l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr32 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 12 | 
							
								1 2 3 4
							 | 
							2llnma2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  𝑅 )  | 
						
						
							| 13 | 
							
								6 7 8 9 10 11 12
							 | 
							syl132anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  𝑅 )  | 
						
						
							| 14 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 17 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								9 17
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								16 2
							 | 
							latjcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ∨  𝑃 )  =  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 22 | 
							
								15 18 20 21
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑅  ∨  𝑃 )  =  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 25 | 
							
								16 1 2 3 4 5
							 | 
							cdlemc1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 26 | 
							
								23 18 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑅  ∨  𝑃 )  =  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  | 
						
						
							| 28 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								8 28
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								16 2
							 | 
							latjcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ∨  𝑄 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 31 | 
							
								15 18 29 30
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑅  ∨  𝑄 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 33 | 
							
								16 1 2 3 4 5
							 | 
							cdlemc1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑄  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑊 ) )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 34 | 
							
								23 18 32 33
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑄  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑊 ) )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑅  ∨  𝑄 )  =  ( 𝑄  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑊 ) ) )  | 
						
						
							| 36 | 
							
								27 35
							 | 
							oveq12d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  ( ( 𝑃  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ∧  ( 𝑄  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 37 | 
							
								13 36
							 | 
							eqtr3d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  =  ( ( 𝑃  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ∧  ( 𝑄  ∨  ( ( 𝑄  ∨  𝑅 )  ∧  𝑊 ) ) ) )  |