| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd3.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd3.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd3.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd3.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp233 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≠  𝑃 )  | 
						
						
							| 11 | 
							
								1 2 3
							 | 
							hlatexch1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ≠  𝑃 )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑆 )  →  𝑆  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 12 | 
							
								6 7 8 9 10 11
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑆 )  →  𝑆  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								1 2 3
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 15 | 
							
								6 9 13 14
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp232 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 17 | 
							
								6
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 19 | 
							
								18 3
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								18 3
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								18 3
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								18 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								17 20 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								18 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( 𝑃  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 28 | 
							
								17 20 22 26 27
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( 𝑃  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 29 | 
							
								15 16 28
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 30 | 
							
								18 3
							 | 
							atbase | 
							⊢ ( 𝑆  ∈  𝐴  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								18 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								17 20 22 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 34 | 
							
								18 1
							 | 
							lattr | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑆  ≤  ( 𝑃  ∨  𝑅 )  ∧  ( 𝑃  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 35 | 
							
								17 31 33 26 34
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑆  ≤  ( 𝑃  ∨  𝑅 )  ∧  ( 𝑃  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							mpan2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑆  ≤  ( 𝑃  ∨  𝑅 )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 37 | 
							
								12 36
							 | 
							syld | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑆 )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 38 | 
							
								5 37
							 | 
							mtod | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑆 ) )  |