| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd4.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd4.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd4.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd4.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd4.t | 
							⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 7 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 8 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp231 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							cdlemb2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄 )  →  ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 12 | 
							
								6 7 8 9 10 11
							 | 
							syl221anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl11 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl12 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl13 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑠  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑠  ≤  𝑊 )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 23 | 
							
								22 3
							 | 
							atbase | 
							⊢ ( 𝑠  ∈  𝐴  →  𝑠  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ad2antrl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑠  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 26 | 
							
								22 3
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 30 | 
							
								22 3
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 34 | 
							
								22 1 2
							 | 
							latnlej1l | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑠  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑠  ≠  𝑃 )  | 
						
						
							| 35 | 
							
								34
							 | 
							necomd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑠  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≠  𝑠 )  | 
						
						
							| 36 | 
							
								21 24 28 32 33 35
							 | 
							syl131anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ≠  𝑠 )  | 
						
						
							| 37 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  | 
						
						
							| 39 | 
							
								1 2 3 4
							 | 
							cdlemd3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑠 ) )  | 
						
						
							| 40 | 
							
								13 16 37 38 15 17 33 39
							 | 
							syl133anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑠 ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑃  ≠  𝑠  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑠 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							simpl3l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 ) )  | 
						
						
							| 43 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 44 | 
							
								43 33
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑃  ≠  𝑄  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5
							 | 
							cdlemd2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑠  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐺 ‘ 𝑠 ) )  | 
						
						
							| 47 | 
							
								13 14 17 16 37 44 45 46
							 | 
							syl331anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐺 ‘ 𝑠 ) )  | 
						
						
							| 48 | 
							
								1 2 3 4 5
							 | 
							cdlemd2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑠  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑠 ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑠 )  =  ( 𝐺 ‘ 𝑠 ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 49 | 
							
								13 14 15 16 19 41 42 47 48
							 | 
							syl332anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 50 | 
							
								12 49
							 | 
							rexlimddv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  |