Metamath Proof Explorer


Theorem cdlemd4

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 30-May-2012)

Ref Expression
Hypotheses cdlemd4.l = ( le ‘ 𝐾 )
cdlemd4.j = ( join ‘ 𝐾 )
cdlemd4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemd4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemd4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemd4 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )

Proof

Step Hyp Ref Expression
1 cdlemd4.l = ( le ‘ 𝐾 )
2 cdlemd4.j = ( join ‘ 𝐾 )
3 cdlemd4.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemd4.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdlemd4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝐾 ∈ HL )
7 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝑊𝐻 )
8 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
9 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
10 simp231 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝑃𝑄 )
11 1 2 3 4 cdlemb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑠𝐴 ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) )
12 6 7 8 9 10 11 syl221anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ∃ 𝑠𝐴 ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) )
13 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simpl12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝐹𝑇𝐺𝑇 ) )
15 simpl13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑅𝐴 )
16 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 simprl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑠𝐴 )
18 simprrl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑠 𝑊 )
19 17 18 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
20 6 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝐾 ∈ Lat )
21 20 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝐾 ∈ Lat )
22 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
23 22 3 atbase ( 𝑠𝐴𝑠 ∈ ( Base ‘ 𝐾 ) )
24 23 ad2antrl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑠 ∈ ( Base ‘ 𝐾 ) )
25 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝑃𝐴 )
26 22 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
27 25 26 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
28 27 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
29 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝑄𝐴 )
30 22 3 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
31 29 30 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
32 31 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
33 simprrr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑠 ( 𝑃 𝑄 ) )
34 22 1 2 latnlej1l ( ( 𝐾 ∈ Lat ∧ ( 𝑠 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑠𝑃 )
35 34 necomd ( ( 𝐾 ∈ Lat ∧ ( 𝑠 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑃𝑠 )
36 21 24 28 32 33 35 syl131anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑠 )
37 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
38 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) )
39 1 2 3 4 cdlemd3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( 𝑅𝐴𝑠𝐴 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) → ¬ 𝑅 ( 𝑃 𝑠 ) )
40 13 16 37 38 15 17 33 39 syl133anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑅 ( 𝑃 𝑠 ) )
41 36 40 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝑠 ∧ ¬ 𝑅 ( 𝑃 𝑠 ) ) )
42 simpl3l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
43 10 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑄 )
44 43 33 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝑄 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) )
45 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) )
46 1 2 3 4 5 cdlemd2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑠𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ( 𝐹𝑠 ) = ( 𝐺𝑠 ) )
47 13 14 17 16 37 44 45 46 syl331anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝐹𝑠 ) = ( 𝐺𝑠 ) )
48 1 2 3 4 5 cdlemd2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑃𝑠 ∧ ¬ 𝑅 ( 𝑃 𝑠 ) ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑠 ) = ( 𝐺𝑠 ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )
49 13 14 15 16 19 41 42 47 48 syl332anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )
50 12 49 rexlimddv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ 𝑅𝑃 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )