| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemd4.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemd4.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemd4.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemd4.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemd4.t | 
							⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑅  =  𝑃  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐹 ‘ 𝑃 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑅  =  𝑃  →  ( 𝐺 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑃 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							⊢ ( 𝑅  =  𝑃  →  ( ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 )  ↔  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll1 | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 16 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  𝑅  ≠  𝑃 )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							3jca | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll3 | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  | 
						
						
							| 20 | 
							
								1 2 3 4 5
							 | 
							cdlemd4 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≠  𝑃 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 21 | 
							
								9 11 13 18 19 20
							 | 
							syl131anc | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑅  ≠  𝑃 )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl3l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 ) )  | 
						
						
							| 23 | 
							
								8 21 22
							 | 
							pm2.61ne | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  | 
						
						
							| 31 | 
							
								1 2 3 4 5
							 | 
							cdlemd2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 32 | 
							
								24 25 26 29 30 31
							 | 
							syl131anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							pm2.61dan | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) )  |