Metamath Proof Explorer


Theorem cdlemd7

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses cdlemd4.l = ( le ‘ 𝐾 )
cdlemd4.j = ( join ‘ 𝐾 )
cdlemd4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemd4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemd4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemd7 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )

Proof

Step Hyp Ref Expression
1 cdlemd4.l = ( le ‘ 𝐾 )
2 cdlemd4.j = ( join ‘ 𝐾 )
3 cdlemd4.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemd4.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdlemd4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) )
7 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
8 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
9 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝐾 ∈ HL )
10 9 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝐾 ∈ Lat )
11 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝑄𝐴 )
12 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
13 12 3 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
14 11 13 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
15 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝑃𝐴 )
16 12 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
18 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝐹𝑇 )
20 12 4 5 ltrncl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) )
21 18 19 17 20 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) )
22 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) )
23 12 1 2 latnlej1l ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) → 𝑄𝑃 )
24 23 necomd ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹𝑃 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) → 𝑃𝑄 )
25 10 14 17 21 22 24 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → 𝑃𝑄 )
26 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
27 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐹𝑇𝐺𝑇 ) )
28 1 2 3 4 5 cdlemd6 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → ( 𝐹𝑄 ) = ( 𝐺𝑄 ) )
29 18 27 7 8 22 26 28 syl231anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐹𝑄 ) = ( 𝐺𝑄 ) )
30 1 2 3 4 5 cdlemd5 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑃𝑄 ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ( 𝐹𝑄 ) = ( 𝐺𝑄 ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )
31 6 7 8 25 26 29 30 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑅𝐴 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ∧ ¬ 𝑄 ( 𝑃 ( 𝐹𝑃 ) ) ) ) → ( 𝐹𝑅 ) = ( 𝐺𝑅 ) )