Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemd4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemd4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemd4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemd4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ) |
7 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
8 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
9 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐾 ∈ HL ) |
10 |
9
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐾 ∈ Lat ) |
11 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
12 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
15 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
16 |
12 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
20 |
12 4 5
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
18 19 17 20
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
23 |
12 1 2
|
latnlej1l |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑄 ≠ 𝑃 ) |
24 |
23
|
necomd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ≠ 𝑄 ) |
25 |
10 14 17 21 22 24
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
26 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
27 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) |
28 |
1 2 3 4 5
|
cdlemd6 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) → ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) |
29 |
18 27 7 8 22 26 28
|
syl231anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) |
30 |
1 2 3 4 5
|
cdlemd5 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |
31 |
6 7 8 25 26 29 30
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ∧ ¬ 𝑄 ≤ ( 𝑃 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( 𝐺 ‘ 𝑅 ) ) |