| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
cdleme.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
cdleme.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
1 2 3 4
|
cdleme50ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
| 6 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) → 𝑓 ∈ 𝑇 ) |
| 8 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) → 𝑧 ∈ 𝑇 ) |
| 9 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 10 |
|
eqtr3 |
⊢ ( ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) → ( 𝑓 ‘ 𝑃 ) = ( 𝑧 ‘ 𝑃 ) ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) → ( 𝑓 ‘ 𝑃 ) = ( 𝑧 ‘ 𝑃 ) ) |
| 12 |
1 2 3 4
|
cdlemd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑓 ‘ 𝑃 ) = ( 𝑧 ‘ 𝑃 ) ) → 𝑓 = 𝑧 ) |
| 13 |
6 7 8 9 11 12
|
syl311anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) → 𝑓 = 𝑧 ) |
| 14 |
13
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑓 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) → 𝑓 = 𝑧 ) ) ) |
| 15 |
14
|
ralrimivv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ∀ 𝑓 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) → 𝑓 = 𝑧 ) ) |
| 16 |
|
fveq1 |
⊢ ( 𝑓 = 𝑧 → ( 𝑓 ‘ 𝑃 ) = ( 𝑧 ‘ 𝑃 ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝑓 = 𝑧 → ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ↔ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) ) |
| 18 |
17
|
reu4 |
⊢ ( ∃! 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ↔ ( ∃ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ∧ ( 𝑧 ‘ 𝑃 ) = 𝑄 ) → 𝑓 = 𝑧 ) ) ) |
| 19 |
5 15 18
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ∃! 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |