Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme0.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
9 |
|
simp2rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ 𝐴 ) |
10 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ≠ 𝑄 ) |
11 |
1 2 3 4 5 6
|
cdleme0ex1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) |
12 |
7 8 9 10 11
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) |
13 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝐾 ∈ HL ) |
14 |
|
hlcvl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CvLat ) |
15 |
13 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝐾 ∈ CvLat ) |
16 |
|
simp2ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝐴 ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑃 ∈ 𝐴 ) |
18 |
9
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑄 ∈ 𝐴 ) |
19 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ∈ 𝐴 ) |
20 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑃 ≠ 𝑄 ) |
21 |
4 1 2
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
22 |
15 17 18 19 20 21
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
23 |
|
df-3an |
⊢ ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ) ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
24 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ≤ 𝑊 ) |
25 |
|
simp2lr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝑃 ≤ 𝑊 ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ¬ 𝑃 ≤ 𝑊 ) |
27 |
|
nbrne2 |
⊢ ( ( 𝑢 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊 ) → 𝑢 ≠ 𝑃 ) |
28 |
24 26 27
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ≠ 𝑃 ) |
29 |
|
simp2rr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝑄 ≤ 𝑊 ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ¬ 𝑄 ≤ 𝑊 ) |
31 |
|
nbrne2 |
⊢ ( ( 𝑢 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → 𝑢 ≠ 𝑄 ) |
32 |
24 30 31
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ≠ 𝑄 ) |
33 |
28 32
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ) ) |
34 |
33
|
biantrurd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ) ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
35 |
23 34
|
bitr4id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
36 |
22 35
|
bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
37 |
36
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ≤ 𝑊 → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
38 |
37
|
pm5.32rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ) → ( ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ∧ 𝑢 ≤ 𝑊 ) ↔ ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) ) |
39 |
38
|
rexbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ∃ 𝑢 ∈ 𝐴 ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ∧ 𝑢 ≤ 𝑊 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) ) |
40 |
12 39
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑢 ∈ 𝐴 ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ∧ 𝑢 ≤ 𝑊 ) ) |