| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme0.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 9 |
|
simp2rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ 𝐴 ) |
| 10 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ≠ 𝑄 ) |
| 11 |
1 2 3 4 5 6
|
cdleme0ex1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) |
| 12 |
7 8 9 10 11
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) |
| 13 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝐾 ∈ HL ) |
| 14 |
|
hlcvl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CvLat ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝐾 ∈ CvLat ) |
| 16 |
|
simp2ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝐴 ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑃 ∈ 𝐴 ) |
| 18 |
9
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑄 ∈ 𝐴 ) |
| 19 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ∈ 𝐴 ) |
| 20 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑃 ≠ 𝑄 ) |
| 21 |
4 1 2
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 22 |
15 17 18 19 20 21
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 23 |
|
df-3an |
⊢ ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ) ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 24 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ≤ 𝑊 ) |
| 25 |
|
simp2lr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝑃 ≤ 𝑊 ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ¬ 𝑃 ≤ 𝑊 ) |
| 27 |
|
nbrne2 |
⊢ ( ( 𝑢 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊 ) → 𝑢 ≠ 𝑃 ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ≠ 𝑃 ) |
| 29 |
|
simp2rr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝑄 ≤ 𝑊 ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ¬ 𝑄 ≤ 𝑊 ) |
| 31 |
|
nbrne2 |
⊢ ( ( 𝑢 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊 ) → 𝑢 ≠ 𝑄 ) |
| 32 |
24 30 31
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → 𝑢 ≠ 𝑄 ) |
| 33 |
28 32
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ) ) |
| 34 |
33
|
biantrurd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ) ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 35 |
23 34
|
bitr4id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( ( 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 36 |
22 35
|
bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ∧ 𝑢 ≤ 𝑊 ) → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 37 |
36
|
3expia |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 ≤ 𝑊 → ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ↔ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 38 |
37
|
pm5.32rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑢 ∈ 𝐴 ) → ( ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ∧ 𝑢 ≤ 𝑊 ) ↔ ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) ) |
| 39 |
38
|
rexbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ∃ 𝑢 ∈ 𝐴 ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ∧ 𝑢 ≤ 𝑊 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑢 ≤ 𝑊 ) ) ) |
| 40 |
12 39
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑢 ∈ 𝐴 ( ( 𝑃 ∨ 𝑢 ) = ( 𝑄 ∨ 𝑢 ) ∧ 𝑢 ≤ 𝑊 ) ) |