Metamath Proof Explorer


Theorem cdleme0ex2N

Description: Part of proof of Lemma E in Crawley p. 113. Note that ( P .\/ u ) = ( Q .\/ u ) is a shorter way to express u =/= P /\ u =/= Q /\ u .<_ ( P .\/ Q ) . (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l = ( le ‘ 𝐾 )
cdleme0.j = ( join ‘ 𝐾 )
cdleme0.m = ( meet ‘ 𝐾 )
cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdleme0ex2N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑢𝐴 ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ∧ 𝑢 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdleme0.l = ( le ‘ 𝐾 )
2 cdleme0.j = ( join ‘ 𝐾 )
3 cdleme0.m = ( meet ‘ 𝐾 )
4 cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
9 simp2rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑄𝐴 )
10 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑃𝑄 )
11 1 2 3 4 5 6 cdleme0ex1N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ 𝑃𝑄 ) → ∃ 𝑢𝐴 ( 𝑢 ( 𝑃 𝑄 ) ∧ 𝑢 𝑊 ) )
12 7 8 9 10 11 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑢𝐴 ( 𝑢 ( 𝑃 𝑄 ) ∧ 𝑢 𝑊 ) )
13 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝐾 ∈ HL )
14 hlcvl ( 𝐾 ∈ HL → 𝐾 ∈ CvLat )
15 13 14 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝐾 ∈ CvLat )
16 simp2ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑃𝐴 )
17 16 3ad2ant1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑃𝐴 )
18 9 3ad2ant1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑄𝐴 )
19 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑢𝐴 )
20 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑃𝑄 )
21 4 1 2 cvlsupr2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑢𝐴 ) ∧ 𝑃𝑄 ) → ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ↔ ( 𝑢𝑃𝑢𝑄𝑢 ( 𝑃 𝑄 ) ) ) )
22 15 17 18 19 20 21 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ↔ ( 𝑢𝑃𝑢𝑄𝑢 ( 𝑃 𝑄 ) ) ) )
23 df-3an ( ( 𝑢𝑃𝑢𝑄𝑢 ( 𝑃 𝑄 ) ) ↔ ( ( 𝑢𝑃𝑢𝑄 ) ∧ 𝑢 ( 𝑃 𝑄 ) ) )
24 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑢 𝑊 )
25 simp2lr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ¬ 𝑃 𝑊 )
26 25 3ad2ant1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ¬ 𝑃 𝑊 )
27 nbrne2 ( ( 𝑢 𝑊 ∧ ¬ 𝑃 𝑊 ) → 𝑢𝑃 )
28 24 26 27 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑢𝑃 )
29 simp2rr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ¬ 𝑄 𝑊 )
30 29 3ad2ant1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ¬ 𝑄 𝑊 )
31 nbrne2 ( ( 𝑢 𝑊 ∧ ¬ 𝑄 𝑊 ) → 𝑢𝑄 )
32 24 30 31 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → 𝑢𝑄 )
33 28 32 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ( 𝑢𝑃𝑢𝑄 ) )
34 33 biantrurd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ( 𝑢 ( 𝑃 𝑄 ) ↔ ( ( 𝑢𝑃𝑢𝑄 ) ∧ 𝑢 ( 𝑃 𝑄 ) ) ) )
35 23 34 bitr4id ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ( ( 𝑢𝑃𝑢𝑄𝑢 ( 𝑃 𝑄 ) ) ↔ 𝑢 ( 𝑃 𝑄 ) ) )
36 22 35 bitrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴𝑢 𝑊 ) → ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ↔ 𝑢 ( 𝑃 𝑄 ) ) )
37 36 3expia ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴 ) → ( 𝑢 𝑊 → ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ↔ 𝑢 ( 𝑃 𝑄 ) ) ) )
38 37 pm5.32rd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) ∧ 𝑢𝐴 ) → ( ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ∧ 𝑢 𝑊 ) ↔ ( 𝑢 ( 𝑃 𝑄 ) ∧ 𝑢 𝑊 ) ) )
39 38 rexbidva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ∃ 𝑢𝐴 ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ∧ 𝑢 𝑊 ) ↔ ∃ 𝑢𝐴 ( 𝑢 ( 𝑃 𝑄 ) ∧ 𝑢 𝑊 ) ) )
40 12 39 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑢𝐴 ( ( 𝑃 𝑢 ) = ( 𝑄 𝑢 ) ∧ 𝑢 𝑊 ) )