Metamath Proof Explorer


Theorem cdleme0gN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l = ( le ‘ 𝐾 )
cdleme0.j = ( join ‘ 𝐾 )
cdleme0.m = ( meet ‘ 𝐾 )
cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme0c.3 𝑉 = ( ( 𝑃 𝑅 ) 𝑊 )
Assertion cdleme0gN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑅𝐴 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑉𝑄 )

Proof

Step Hyp Ref Expression
1 cdleme0.l = ( le ‘ 𝐾 )
2 cdleme0.j = ( join ‘ 𝐾 )
3 cdleme0.m = ( meet ‘ 𝐾 )
4 cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme0c.3 𝑉 = ( ( 𝑃 𝑅 ) 𝑊 )
8 1 2 3 4 5 7 cdleme0c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑅𝐴 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑉𝑄 )