| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme0.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme0.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme0.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
simp23r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ¬ 𝑅 ≤ 𝑊 ) |
| 8 |
|
neanior |
⊢ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ↔ ¬ ( 𝑅 = 𝑃 ∨ 𝑅 = 𝑄 ) ) |
| 9 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
| 10 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑅 ∈ 𝐴 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑅 ∈ 𝐴 ) |
| 12 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑅 ≠ 𝑃 ) |
| 13 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑅 ≠ 𝑄 ) |
| 14 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 15 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝐾 ∈ HL ) |
| 16 |
|
hlcvl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CvLat ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝐾 ∈ CvLat ) |
| 18 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
| 19 |
18
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑃 ∈ 𝐴 ) |
| 20 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑄 ∈ 𝐴 ) |
| 22 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑃 ≠ 𝑄 ) |
| 23 |
4 1 2
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 24 |
17 19 21 11 22 23
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 25 |
12 13 14 24
|
mpbir3and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 26 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐾 ∈ HL ) |
| 27 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑊 ∈ 𝐻 ) |
| 28 |
|
simp21r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
| 29 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
| 30 |
1 2 3 4 5 6
|
lhpat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
| 31 |
26 27 18 28 20 29 30
|
syl222anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑈 ∈ 𝐴 ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
| 33 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 34 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 35 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 36 |
1 2 3 4 5 6
|
cdleme02N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑈 ) ∧ 𝑈 ≤ 𝑊 ) ) |
| 37 |
36
|
simpld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑈 ) ) |
| 38 |
33 34 35 22 37
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑈 ) ) |
| 39 |
|
df-rmo |
⊢ ( ∃* 𝑟 ∈ 𝐴 ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ↔ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑃 ∨ 𝑟 ) = ( 𝑃 ∨ 𝑅 ) ) |
| 41 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 42 |
40 41
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( 𝑟 = 𝑈 → ( 𝑃 ∨ 𝑟 ) = ( 𝑃 ∨ 𝑈 ) ) |
| 44 |
|
oveq2 |
⊢ ( 𝑟 = 𝑈 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑈 ) ) |
| 45 |
43 44
|
eqeq12d |
⊢ ( 𝑟 = 𝑈 → ( ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ↔ ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑈 ) ) ) |
| 46 |
42 45
|
rmoi |
⊢ ( ( ∃* 𝑟 ∈ 𝐴 ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑈 ) ) ) → 𝑅 = 𝑈 ) |
| 47 |
39 46
|
syl3an1br |
⊢ ( ( ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑈 ) = ( 𝑄 ∨ 𝑈 ) ) ) → 𝑅 = 𝑈 ) |
| 48 |
9 11 25 32 38 47
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑅 = 𝑈 ) |
| 49 |
36
|
simprd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑈 ≤ 𝑊 ) |
| 50 |
33 34 35 22 49
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑈 ≤ 𝑊 ) |
| 51 |
48 50
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) ) → 𝑅 ≤ 𝑊 ) |
| 52 |
51
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ) → 𝑅 ≤ 𝑊 ) ) |
| 53 |
8 52
|
biimtrrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ¬ ( 𝑅 = 𝑃 ∨ 𝑅 = 𝑄 ) → 𝑅 ≤ 𝑊 ) ) |
| 54 |
7 53
|
mt3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ∃* 𝑟 ( 𝑟 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑅 = 𝑃 ∨ 𝑅 = 𝑄 ) ) |