Metamath Proof Explorer


Theorem cdleme0moN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l = ( le ‘ 𝐾 )
cdleme0.j = ( join ‘ 𝐾 )
cdleme0.m = ( meet ‘ 𝐾 )
cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdleme0moN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑅 = 𝑃𝑅 = 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdleme0.l = ( le ‘ 𝐾 )
2 cdleme0.j = ( join ‘ 𝐾 )
3 cdleme0.m = ( meet ‘ 𝐾 )
4 cdleme0.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme0.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme0.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 simp23r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ 𝑅 𝑊 )
8 neanior ( ( 𝑅𝑃𝑅𝑄 ) ↔ ¬ ( 𝑅 = 𝑃𝑅 = 𝑄 ) )
9 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
10 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑅𝐴 )
11 10 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑅𝐴 )
12 simprl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑅𝑃 )
13 simprr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑅𝑄 )
14 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑅 ( 𝑃 𝑄 ) )
15 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝐾 ∈ HL )
16 hlcvl ( 𝐾 ∈ HL → 𝐾 ∈ CvLat )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝐾 ∈ CvLat )
18 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝐴 )
19 18 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑃𝐴 )
20 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄𝐴 )
21 20 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑄𝐴 )
22 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑃𝑄 )
23 4 1 2 cvlsupr2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ↔ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
24 17 19 21 11 22 23 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ↔ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
25 12 13 14 24 mpbir3and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) )
26 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
27 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑊𝐻 )
28 simp21r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ 𝑃 𝑊 )
29 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝑄 )
30 1 2 3 4 5 6 lhpat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑈𝐴 )
31 26 27 18 28 20 29 30 syl222anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑈𝐴 )
32 31 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑈𝐴 )
33 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
34 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
35 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
36 1 2 3 4 5 6 cdleme02N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( 𝑃 𝑈 ) = ( 𝑄 𝑈 ) ∧ 𝑈 𝑊 ) )
37 36 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝑃 𝑈 ) = ( 𝑄 𝑈 ) )
38 33 34 35 22 37 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → ( 𝑃 𝑈 ) = ( 𝑄 𝑈 ) )
39 df-rmo ( ∃* 𝑟𝐴 ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ↔ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
40 oveq2 ( 𝑟 = 𝑅 → ( 𝑃 𝑟 ) = ( 𝑃 𝑅 ) )
41 oveq2 ( 𝑟 = 𝑅 → ( 𝑄 𝑟 ) = ( 𝑄 𝑅 ) )
42 40 41 eqeq12d ( 𝑟 = 𝑅 → ( ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ↔ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) )
43 oveq2 ( 𝑟 = 𝑈 → ( 𝑃 𝑟 ) = ( 𝑃 𝑈 ) )
44 oveq2 ( 𝑟 = 𝑈 → ( 𝑄 𝑟 ) = ( 𝑄 𝑈 ) )
45 43 44 eqeq12d ( 𝑟 = 𝑈 → ( ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ↔ ( 𝑃 𝑈 ) = ( 𝑄 𝑈 ) ) )
46 42 45 rmoi ( ( ∃* 𝑟𝐴 ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ∧ ( 𝑅𝐴 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑈𝐴 ∧ ( 𝑃 𝑈 ) = ( 𝑄 𝑈 ) ) ) → 𝑅 = 𝑈 )
47 39 46 syl3an1br ( ( ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ∧ ( 𝑅𝐴 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ∧ ( 𝑈𝐴 ∧ ( 𝑃 𝑈 ) = ( 𝑄 𝑈 ) ) ) → 𝑅 = 𝑈 )
48 9 11 25 32 38 47 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑅 = 𝑈 )
49 36 simprd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑈 𝑊 )
50 33 34 35 22 49 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑈 𝑊 )
51 48 50 eqbrtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) ∧ ( 𝑅𝑃𝑅𝑄 ) ) → 𝑅 𝑊 )
52 51 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑅𝑃𝑅𝑄 ) → 𝑅 𝑊 ) )
53 8 52 syl5bir ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ¬ ( 𝑅 = 𝑃𝑅 = 𝑄 ) → 𝑅 𝑊 ) )
54 7 53 mt3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ∧ ∃* 𝑟 ( 𝑟𝐴 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑅 = 𝑃𝑅 = 𝑄 ) )