| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme0nex.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme0nex.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme0nex.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							jca | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ralnex | 
							⊢ ( ∀ 𝑟  ∈  𝐴 ¬  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylibr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ∀ 𝑟  ∈  𝐴 ¬  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑟  ≤  𝑊  ↔  𝑅  ≤  𝑊 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							notbid | 
							⊢ ( 𝑟  =  𝑅  →  ( ¬  𝑟  ≤  𝑊  ↔  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑃  ∨  𝑟 )  =  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑄  ∨  𝑟 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqeq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 )  ↔  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							anbi12d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							notbid | 
							⊢ ( 𝑟  =  𝑅  →  ( ¬  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) )  ↔  ¬  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rspcva | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  ∀ 𝑟  ∈  𝐴 ¬  ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  →  ¬  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 19 | 
							
								7 10 18
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ¬  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 21 | 
							
								
							 | 
							hlcvl | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  CvLat )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝐾  ∈  CvLat )  | 
						
						
							| 23 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 24 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 26 | 
							
								3 1 2
							 | 
							cvlsupr2 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 27 | 
							
								22 23 24 7 25 26
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							anbi2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ↔  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) ) )  | 
						
						
							| 29 | 
							
								19 28
							 | 
							mtbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ¬  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							ianor | 
							⊢ ( ¬  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( ¬  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∨  ¬  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							anbi2i | 
							⊢ ( ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( ¬  𝑅  ≤  𝑊  ∧  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							an12 | 
							⊢ ( ( ¬  𝑅  ≤  𝑊  ∧  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							bitri | 
							⊢ ( ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							notbii | 
							⊢ ( ¬  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ¬  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∧  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							pm4.62 | 
							⊢ ( ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  →  ¬  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( ¬  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ∨  ¬  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 37 | 
							
								30 35 36
							 | 
							3bitr4ri | 
							⊢ ( ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  →  ¬  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  ↔  ¬  ( ¬  𝑅  ≤  𝑊  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 38 | 
							
								29 37
							 | 
							sylibr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  →  ¬  ( ¬  𝑅  ≤  𝑊  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 39 | 
							
								6 38
							 | 
							mt2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ¬  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							neanior | 
							⊢ ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 )  ↔  ¬  ( 𝑅  =  𝑃  ∨  𝑅  =  𝑄 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							con2bii | 
							⊢ ( ( 𝑅  =  𝑃  ∨  𝑅  =  𝑄 )  ↔  ¬  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄 ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							sylibr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  ∃ 𝑟  ∈  𝐴 ( ¬  𝑟  ≤  𝑊  ∧  ( 𝑃  ∨  𝑟 )  =  ( 𝑄  ∨  𝑟 ) ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( 𝑅  =  𝑃  ∨  𝑅  =  𝑄 ) )  |