Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme10.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme10.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme10.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme10.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme10.d |
⊢ 𝐷 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
7 |
6
|
oveq2i |
⊢ ( 𝑆 ∨ 𝐷 ) = ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
9 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑆 ∈ 𝐴 ) |
10 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑅 ∈ 𝐴 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
11 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
8 10 9 12
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
15 |
11 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
17 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
18 |
11 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
19 |
18
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
20 |
11 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
21 |
9 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
22 |
11 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ≤ ( 𝑅 ∨ 𝑆 ) ) |
23 |
17 19 21 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝑆 ≤ ( 𝑅 ∨ 𝑆 ) ) |
24 |
11 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑅 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑆 ) ) → ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑆 ∨ 𝑊 ) ) ) |
25 |
8 9 13 16 23 24
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑆 ∨ 𝑊 ) ) ) |
26 |
11 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑅 ) ) |
27 |
17 19 21 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑅 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑅 ) ) |
28 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
29 |
1 2 28 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
30 |
29
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
31 |
27 30
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( ( 𝑅 ∨ 𝑆 ) ∧ ( 𝑆 ∨ 𝑊 ) ) = ( ( 𝑆 ∨ 𝑅 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
32 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
33 |
8 32
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
34 |
11 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑆 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
17 21 19 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
36 |
11 3 28
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑆 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑅 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑆 ∨ 𝑅 ) ) |
37 |
33 35 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( ( 𝑆 ∨ 𝑅 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑆 ∨ 𝑅 ) ) |
38 |
25 31 37
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( 𝑆 ∨ 𝑅 ) ) |
39 |
7 38
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) → ( 𝑆 ∨ 𝐷 ) = ( 𝑆 ∨ 𝑅 ) ) |