Metamath Proof Explorer


Theorem cdleme10tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. Y represents t_2. In their notation, we prove t \/ t_2 = t \/ r. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme10t.l = ( le ‘ 𝐾 )
cdleme10t.j = ( join ‘ 𝐾 )
cdleme10t.m = ( meet ‘ 𝐾 )
cdleme10t.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme10t.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme10t.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
Assertion cdleme10tN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑅𝐴 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) → ( 𝑇 𝑌 ) = ( 𝑇 𝑅 ) )

Proof

Step Hyp Ref Expression
1 cdleme10t.l = ( le ‘ 𝐾 )
2 cdleme10t.j = ( join ‘ 𝐾 )
3 cdleme10t.m = ( meet ‘ 𝐾 )
4 cdleme10t.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme10t.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme10t.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
7 1 2 3 4 5 6 cdleme10 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑅𝐴 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) → ( 𝑇 𝑌 ) = ( 𝑇 𝑅 ) )