Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme10tN
Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114.
Y represents t_2. In their notation, we prove t \/ t_2 = t
\/ r. (Contributed by NM , 8-Oct-2012)
(New usage is discouraged.)
Ref
Expression
Hypotheses
cdleme10t.l
⊢ ≤ = ( le ‘ 𝐾 )
cdleme10t.j
⊢ ∨ = ( join ‘ 𝐾 )
cdleme10t.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdleme10t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdleme10t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdleme10t.y
⊢ 𝑌 = ( ( 𝑅 ∨ 𝑇 ) ∧ 𝑊 )
Assertion
cdleme10tN
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) → ( 𝑇 ∨ 𝑌 ) = ( 𝑇 ∨ 𝑅 ) )
Proof
Step
Hyp
Ref
Expression
1
cdleme10t.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdleme10t.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdleme10t.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdleme10t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdleme10t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdleme10t.y
⊢ 𝑌 = ( ( 𝑅 ∨ 𝑇 ) ∧ 𝑊 )
7
1 2 3 4 5 6
cdleme10
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐴 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) → ( 𝑇 ∨ 𝑌 ) = ( 𝑇 ∨ 𝑅 ) )