| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme12.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme12.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme12.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme12.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme12.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme12.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme12.f | 
							⊢ 𝐹  =  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme12.g | 
							⊢ 𝐺  =  ( ( 𝑇  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 10 | 
							
								9
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp12l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp13l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 14
							 | 
							cdleme0aa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								11 12 13 15
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								14 2
							 | 
							latjidm | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑈  ∨  𝑈 )  =  𝑈 )  | 
						
						
							| 18 | 
							
								10 16 17
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑈  ∨  𝑈 )  =  𝑈 )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝑈  ∨  𝑈 ) )  =  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑈  ≤  ( 𝑆  ∨  𝑇 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 22 | 
							
								14 4
							 | 
							atbase | 
							⊢ ( 𝑆  ∈  𝐴  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								14 4
							 | 
							atbase | 
							⊢ ( 𝑇  ∈  𝐴  →  𝑇  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑇  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑇  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								10 23 26 27
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								14 1 2
							 | 
							latleeqj2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑈  ≤  ( 𝑆  ∨  𝑇 )  ↔  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  =  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 30 | 
							
								10 16 28 29
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑈  ≤  ( 𝑆  ∨  𝑇 )  ↔  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  =  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 31 | 
							
								20 30
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  =  ( 𝑆  ∨  𝑇 ) )  | 
						
						
							| 32 | 
							
								19 31
							 | 
							eqtr2d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑆  ∨  𝑇 )  =  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝑈  ∨  𝑈 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) ) )  →  ( 𝑆  ∨  𝐹 )  =  ( 𝑆  ∨  𝑈 ) )  | 
						
						
							| 35 | 
							
								11 12 13 33 34
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑆  ∨  𝐹 )  =  ( 𝑆  ∨  𝑈 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5 6 8
							 | 
							cdleme1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝐺 )  =  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 38 | 
							
								11 12 13 36 37
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑇  ∨  𝐺 )  =  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							oveq12d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝐹 )  ∨  ( 𝑇  ∨  𝐺 ) )  =  ( ( 𝑆  ∨  𝑈 )  ∨  ( 𝑇  ∨  𝑈 ) ) )  | 
						
						
							| 40 | 
							
								14 2
							 | 
							latj4 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑇  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑈  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝑈  ∨  𝑈 ) )  =  ( ( 𝑆  ∨  𝑈 )  ∨  ( 𝑇  ∨  𝑈 ) ) )  | 
						
						
							| 41 | 
							
								10 23 26 16 16 40
							 | 
							syl122anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝑈  ∨  𝑈 ) )  =  ( ( 𝑆  ∨  𝑈 )  ∨  ( 𝑇  ∨  𝑈 ) ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtr4d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝐹 )  ∨  ( 𝑇  ∨  𝐺 ) )  =  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝑈  ∨  𝑈 ) ) )  | 
						
						
							| 43 | 
							
								32 42
							 | 
							eqtr4d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑆  ∨  𝑇 )  =  ( ( 𝑆  ∨  𝐹 )  ∨  ( 𝑇  ∨  𝐺 ) ) )  | 
						
						
							| 44 | 
							
								1 2 3 4 5 6 7 14
							 | 
							cdleme1b | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴 ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								11 12 13 21 44
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5 6 8 14
							 | 
							cdleme1b | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  →  𝐺  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								11 12 13 24 46
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐺  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 48 | 
							
								14 2
							 | 
							latj4 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝐹  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑇  ∈  ( Base ‘ 𝐾 )  ∧  𝐺  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑆  ∨  𝐹 )  ∨  ( 𝑇  ∨  𝐺 ) )  =  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝐹  ∨  𝐺 ) ) )  | 
						
						
							| 49 | 
							
								10 23 45 26 47 48
							 | 
							syl122anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝐹 )  ∨  ( 𝑇  ∨  𝐺 ) )  =  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝐹  ∨  𝐺 ) ) )  | 
						
						
							| 50 | 
							
								43 49
							 | 
							eqtr2d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝐹  ∨  𝐺 ) )  =  ( 𝑆  ∨  𝑇 ) )  | 
						
						
							| 51 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐹  ∈  ( Base ‘ 𝐾 )  ∧  𝐺  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹  ∨  𝐺 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 52 | 
							
								10 45 47 51
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝐹  ∨  𝐺 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								14 1 2
							 | 
							latleeqj2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹  ∨  𝐺 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝐹  ∨  𝐺 )  ≤  ( 𝑆  ∨  𝑇 )  ↔  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝐹  ∨  𝐺 ) )  =  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 54 | 
							
								10 52 28 53
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝐹  ∨  𝐺 )  ≤  ( 𝑆  ∨  𝑇 )  ↔  ( ( 𝑆  ∨  𝑇 )  ∨  ( 𝐹  ∨  𝐺 ) )  =  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 55 | 
							
								50 54
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝐹  ∨  𝐺 )  ≤  ( 𝑆  ∨  𝑇 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 57 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 59 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 60 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme3fa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ∈  𝐴 )  | 
						
						
							| 61 | 
							
								11 56 57 33 58 59 60
							 | 
							syl132anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐹  ∈  𝐴 )  | 
						
						
							| 62 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 63 | 
							
								1 2 3 4 5 6 8
							 | 
							cdleme3fa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐺  ∈  𝐴 )  | 
						
						
							| 64 | 
							
								11 56 57 36 58 62 63
							 | 
							syl132anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐺  ∈  𝐴 )  | 
						
						
							| 65 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝐹  ≠  𝐺 )  | 
						
						
							| 66 | 
							
								1 2 4
							 | 
							ps-1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹  ∈  𝐴  ∧  𝐺  ∈  𝐴  ∧  𝐹  ≠  𝐺 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  →  ( ( 𝐹  ∨  𝐺 )  ≤  ( 𝑆  ∨  𝑇 )  ↔  ( 𝐹  ∨  𝐺 )  =  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 67 | 
							
								9 61 64 65 21 24 66
							 | 
							syl132anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( ( 𝐹  ∨  𝐺 )  ≤  ( 𝑆  ∨  𝑇 )  ↔  ( 𝐹  ∨  𝐺 )  =  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 68 | 
							
								55 67
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑈  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  ( 𝐹  ∨  𝐺 )  =  ( 𝑆  ∨  𝑇 ) )  |